
CSE 332 Autumn 2023
Lecture 13: Hashing

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Dictionary Data Structures

Data Structure Time to insert Time to find Time to delete

Unsorted Array Θ(𝑛) Θ(𝑛) Θ(𝑛)

Unsorted Linked List Θ(𝑛) Θ(𝑛) Θ(𝑛)

Sorted Array Θ 𝑛 Θ(log 𝑛) Θ(𝑛)

Sorted Linked List Θ 𝑛 Θ 𝑛 Θ 𝑛

Binary Search Tree Θ 𝑛 Θ 𝑛 Θ 𝑛

AVL Tree Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛)

Hash Table (Worst case) Θ(𝑛) Θ(𝑛) Θ(𝑛)

Hash Table (Average) Θ 1 Θ 1 Θ 1

Hash Tables

• Idea:
• Have a small array to store information

• Use a hash function to convert the key into an index
• Hash function should “scatter” the keys, behave as if it randomly assigned keys to indices

• Store key at the index given by the hash function

• Do something if two keys map to the same place (should be very rare)
• Collision resolution

ℎ(𝑘)

Key Object

Index
between 0
and size-1

Insert / find /
delete & value

What Influences Running time?

• How “spread out” our input keys are
• How much do keys repeat

• Hash the function itself will take time

• Size of the table relative to the number things inserted

• How well our hash function scatters the keys

• What do we do when two things hash to the same spot

Properties of a “Good” Hash

• Definition: A hash function maps objects to integers

• Should be very efficient
• Calculating the hash should be negligible

• Should randomly scatter objects
• Objects that are similar to each other should be likely to end up far away

• Should use the entire table
• There should not be any indices in the table that nothing can hash to
• Picking a table size that is prime helps with this

• Should use things needed to “identify” the object
• Use only fields you would check for a .equals method be included in calculating the hash
• More fields typically leads to fewer collisions, but less efficient calculation

Collision Resolution

• A Collision occurs when we want to insert something into an already-
occupied position in the hash table

• 2 main strategies:
• Separate Chaining

• Use a secondary data structure to contain the items
• E.g. each index in the hash table is itself a linked list

• Open Addressing
• Use a different spot in the table instead

• Linear Probing

• Quadratic Probing

• Double Hashing

0 1 2 3 4 5 6 7 8 9

Separate Chaining Insert

• To insert 𝑘, 𝑣:
• Compute the index using 𝑖 = ℎ 𝑘 % 𝑠𝑖𝑧𝑒

• Add the key-value pair to the data structure at 𝑡𝑎𝑏𝑙𝑒 𝑖

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

Separate Chaining Find

• To find 𝑘:
• Compute the index using 𝑖 = ℎ 𝑘 % 𝑠𝑖𝑧𝑒

• Call find with the key on the data structure at 𝑡𝑎𝑏𝑙𝑒 𝑖

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

Separate Chaining Delete

• To delete 𝑘:
• Compute the index using 𝑖 = ℎ 𝑘 % 𝑠𝑖𝑧𝑒

• Call delete with the key on the data structure at 𝑡𝑎𝑏𝑙𝑒 𝑖

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

Formal Running Time Analysis

• The load factor of a hash table represents the average number of
items per “bucket”

• 𝜆 =
𝑛

𝑠𝑖𝑧𝑒

• Assume we have a has table that uses a linked-list for separate
chaining
• What is the expected number of comparisons needed in an unsuccessful find?

• What is the expected number of comparisons needed in a successful find?

• How can we make the expected running time Θ(1)?

Load Factor?

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

Load Factor?

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

Load Factor?

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣 𝑘, 𝑣𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

Collision Resolution: Linear Probing

• When there’s a collision, use the next open space in the table

0 1 2 3 4 5 6 7 8 9

Linear Probing: Insert Procedure

• To insert 𝑘, 𝑣
• Calculate 𝑖 = ℎ 𝑘 % 𝑠𝑖𝑧𝑒

• If 𝑡𝑎𝑏𝑙𝑒[𝑖] is occupied then try 𝑖 + 1 % 𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 2 % 𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 3 % 𝑠𝑖𝑧𝑒

• …

0 1 2 3 4 5 6 7 8 9

Linear Probing: Find

• Let’s do this together!

Linear Probing: Find

• To find key 𝑘
• Calculate 𝑖 = ℎ 𝑘 % 𝑠𝑖𝑧𝑒

• If 𝑡𝑎𝑏𝑙𝑒 𝑖 is occupied and does not contain 𝑘 then look at 𝑖 + 1 % 𝑠𝑖𝑧𝑒

• If that is occupied and does not contain 𝑘 then look at 𝑖 + 2 % 𝑠𝑖𝑧𝑒

• If that is occupied and does not contain 𝑘 then look at 𝑖 + 3 % 𝑠𝑖𝑧𝑒

• Repeat until you either find 𝑘 or else you reach an empty cell in the table

Linear Probing: Delete

• Let’s do this together!

Linear Probing: Delete

• Option 1: Find the last thing with a matching hash, move that into the
spot you deleted from

• Option 2: Called “tombstone” deletion. Leave a special object that
indicates an object was deleted from there
• The tombstone does not act as an open space when finding (so keep looking

after its reached)

• When inserting you can replace a tombstone with a new item

𝑘, 𝑣 𝑘, 𝑣 𝑘, 𝑣 𝑘, 𝑣

0 1 2 3 4 5 6 7 8 9

Downsides of Linear Probing

• What happens when 𝜆 approaches 1?

• What happens when 𝜆 exceeds 1?

Quadratic Probing: Insert Procedure

• To insert 𝑘, 𝑣
• Calculate 𝑖 = ℎ 𝑘 % 𝑠𝑖𝑧𝑒

• If 𝑡𝑎𝑏𝑙𝑒[𝑖] is occupied then try 𝑖 + 12 % 𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 22 % 𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 32 % 𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 42 % 𝑠𝑖𝑧𝑒

• …

0 1 2 3 4 5 6 7 8 9

Quadratic Probing: Example

• Insert:
• 76

• 40

• 48

• 5

• 55

• 47

0 1 2 3 4 5 6

Using Quadratic Probing

• If you probe 𝑡𝑎𝑏𝑙𝑒𝑠𝑖𝑧𝑒 times, you start repeating the same indices

• If 𝑡𝑎𝑏𝑙𝑒𝑠𝑖𝑧𝑒 is prime and 𝜆 <
1

2
 then you’re guaranteed to find an

open spot in at most 𝑡𝑎𝑏𝑙𝑒𝑠𝑖𝑧𝑒/2 probes

• Helps with the clustering problem of linear probing, but does not help
if many things hash to the same value

Double Hashing: Insert Procedure

• Given ℎ and 𝑔 are both good hash functions

• To insert 𝑘, 𝑣
• Calculate 𝑖 = ℎ 𝑘 % 𝑠𝑖𝑧𝑒

• If 𝑡𝑎𝑏𝑙𝑒[𝑖] is occupied then try 𝑖 + 𝑔 𝑘 % 𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 2 ⋅ 𝑔 𝑘 % 𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 3 ⋅ 𝑔 𝑘 % 𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 4 ⋅ 𝑔 𝑘 % 𝑠𝑖𝑧𝑒

• …

0 1 2 3 4 5 6 7 8 9

Rehashing

• If your load factor 𝜆 gets too large, copy everything over to a larger
hash table
• To do this: make a new array with a new hash function

• Re-insert all items into the new hash table with the new hash function

• New hash table should be “roughly” double the size (but probably still want it
to be prime)

	Slide 1: CSE 332 Autumn 2023 Lecture 13: Hashing
	Slide 2: Dictionary Data Structures
	Slide 3: Hash Tables
	Slide 4: What Influences Running time?
	Slide 5: Properties of a “Good” Hash
	Slide 6: Collision Resolution
	Slide 7: Separate Chaining Insert
	Slide 8: Separate Chaining Find
	Slide 9: Separate Chaining Delete
	Slide 10: Formal Running Time Analysis
	Slide 11: Load Factor?
	Slide 12: Load Factor?
	Slide 13: Load Factor?
	Slide 14: Collision Resolution: Linear Probing
	Slide 15: Linear Probing: Insert Procedure
	Slide 16: Linear Probing: Find
	Slide 17: Linear Probing: Find
	Slide 18: Linear Probing: Delete
	Slide 19: Linear Probing: Delete
	Slide 20: Downsides of Linear Probing
	Slide 21: Quadratic Probing: Insert Procedure
	Slide 22: Quadratic Probing: Example
	Slide 23: Using Quadratic Probing
	Slide 24: Double Hashing: Insert Procedure
	Slide 25: Rehashing

