CSE 332: Data Structures and Parallelism

Section 3: Recurrences and Closed Forms

Terminology | Recurrence Function/Relation | General formula Closed form

Definition Piecewise function that Function written as the General formula evaluated without
mathematically models the number of expansion i recurrence function or summations
runtime of a recursive algorithm | and recurrence function (force them to be in terms of

(might want to define constants) | (might have a summation) | constants or n)

Example Leti = logzn,
T(m)=c, ,forn=1

T(n)= T(—,fgvn) +log,n - c,
— 7l otherwise 2
I(n)_l(2)+c21

T(n) = T(Ll) +ti-c,
z T(1) + logzn "c,

c, + logzn "c,

0. Not to Tree

Consider the function f(n). Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh
bound for this recurrence.

1 f(n) {

2 if (n <= 0) {

3 return 1;

4 }

5 return 2 * f(n - 1) + 1;
6 }

a) Find a recurrence T(n) modeling the worst-case runtime complexity of f(n)

T(n)=c0 ,ifn <0
Tm)=Tn - 1)+ c, otherwise

b) Find a closed form for T(n)

Unrolling the recurrence, we get
Tm)=Tn - 1)+ ¢,

=T — 2)+C1+C1
=T(0)+ ¢, ttc
=c,tc ttc

=cC n-c
0+ 1




1. To Tree

Consider the function h(n). Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh
bound for this recurrence.

1 h(n) {
2 if (n <=1) {
3 return 1
4 } else {
5 return h(n/2) + n + 2*h(n/2)
6 }
7}
a) Find a recurrence T(n) modeling the worst-case runtime complexity of h(n)

b)

T(n)=cO Jfn <1
T(n) = ZT(%) +e, otherwise

Find a closed form for T(n)

The recursion tree has height Ig(n), each non-leaf level i has work c12i, and the leaf level has work cozlg(n)

. Putting this together, we have:

lg(m)—1 . lg(n) lg(m)—-1
i g(n) i
( iz% c12) +-COZ —-cl( P 2 +—con
Ll
=13 + c,n

_ Ig(n)
= 01(2 — 1) tcn
= cl(n -1+ c,n

- (Co + Cl)n -4

2. To Tree or Not to Tree

Consider the function f(n). Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh
bound for this recurrence.

1 f(n) {

2 if (n <= 1) {

3 return 0

4 }

5 int result = f(n/2)

6 for (int i = 0; i < n; i++) {
7 result *= 4

8 }

9 return result + f(n/2)

10 }




a)

b)

Find a recurrence T (n) modeling the worst-case runtime complexity of f(n)

We look at the three separate components (base case, non-recursive work, recursive work). The base
case is a constant amount of work, because we only do a return statement. We’'ll label it <, The

non-recursive work is a constant amount of work (we'll call it Cl) for the assignments and i f tests and a
constant (we'll call CZ) multiple of n for the loops. The recursive work is 2T(%).
Putting these together, we get:

T(n) = <, ,if 1

Tr(m) = ZT(%) +eon+c, , otherwise

Find a closed form for T(n)

The recursion tree has lg(n) height, each non-leaf node of the tree does CZ% +c, work, each

leaf node does <, work, and each level has 2' nodes.

So, the total work is

lg(m)—-1 lg(n)
i n g(n
( % 2(cl+cz7))+co-2

i=0

lgm-1
L
( Eo 2c1+czn +co-(n)
1l
1 1-2

cl(n -+ c,n lg(n) + cn

=c +c,n lg(n) + c,n




3. Big-Oof Bounds

Consider the function f(n). Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh
bound for this recurrence.

1 f(n) {

2 if (n ==1) {

3 return 0

4 }

5

6 int result = 0

7 for (int 1 = 9; i < n; i++) {

8 for (int j =0; j < i; j++) {
9 result += j

10

11 }

12 }

13 return f(n/2) + result + f(n/2)
14 }

a) Find a recurrence T(n) modeling the worst-case runtime complexity of f(n)

T(n)=c0 Jifn=1

T(n) = ZT(%) + Cz@ te, otherwise

b) Find a Big-Oh bound for your recurrence.

Since we only want a Big-Oh, we can actually leave off lower-order terms when doing our analysis, as
they won't affect the runtime bounds; so, we can ignore the constants <, and c, in our analysis.

n(n—-1) _ n’
Note thatf =5 -

Big-Oh bound.

2 . . .
% € O(n ) We can, again, ignore the lower-order term (%) since we only want a

2
The recursion tree has Ig(n) height, each non-leaf node of the tree does (ZL) work, each leaf node does

<, work, and each level has 2' nodes.

So, the total work is:
lgm-1 2 ) zlg(n)—1 5 22 2

i Lot — ="
) 2(2,.) +c, 2 n Eo 4,-}—con<nEoz,,-}—con = +cn

i=

This expression is upper-bounded by n’soT € O(nz).




4. Odds Not in Your Favor

Consider the function g(n). Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh
bound for this recurrence.

1 g(n) {

2 if (n <=1) {

3 return 1000

4 }

5 if (g(n/3) > 5) {

6 for (int i = 0; 1 < n; i++) {
7 println("Yay!")

8 }

9 return 5 * g(n/3)

10 } else {

11 for (int 1 = 0; 1 < n * n; i++) {
12 println("Yay!")

13 }

14 return 4 * g(n/3)

15 }

16 }

a) Find a recurrence T(n) modeling the worst-case runtime complexity of f(n)

T(n)=c0 Jfn <1

T(n) = ZT(%) tente, otherwise

b) Find a closed form for T(n)

cn

The recursion tree has height logs(n)’ each non-leaf level i has work ( ;

+ cz)zi, and the leaf level has

log,(n) _ ,
work COZ . Putting this together, we have:
log3(n)—1

cn i log,(n)
Y (( 31‘ +cz)21)+0020g"n

i=0

log,(m~1 clnzi i log, ()
= EO ( X + (,‘22 ) + COZ
10g3(n)—1 | log3(n)—1
2\! i log,(n)
=cn Eo (?) + Cz( Eo 2 ) +c,2

Using the finite geometric series,

2

log, (n)
_ 1_(?) : 1_2"’&(”) logj(n)_ 21108, log, () log, (n)
- cln( L )+ C2( ez =senl1 = (5) T g2 — 1) 42

3
log,(2)

log, (2) log,(2)
L +cz(n : —1)+c0n :

s, 3 D L D D
= Cln cln CZTl C2 COTl

= 3cln(1 -

log, (2)
_3cln+(C0+C2_ 3C1)1’l -c

2




