
CSE 332: Data Structures & Parallelism

Lecture 13: Beyond Comparison Sorting

Ruth Anderson

Winter 2019

Today

• Sorting

– Comparison sorting

– Beyond comparison sorting

2/11/2019 2

The Big Picture

2/11/2019 3

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

Shell sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

sorting

How fast can we sort?

• Heapsort & mergesort have O(n log n) worst-case running time

• Quicksort has O(n log n) average-case running times

• These bounds are all tight, actually (n log n)

• So maybe we need to dream up another algorithm with a lower
asymptotic complexity, such as O(n) or O(n log log n)

– Instead: prove that this is impossible

• Assuming our comparison model: The only operation an

algorithm can perform on data items is a 2-element

comparison

2/11/2019 4

A Different View of Sorting

• Assume we have n elements to sort

– And for simplicity, none are equal (no duplicates)

• How many permutations (possible orderings) of the elements?

• Example, n=3,

2/11/2019 5

A Different View of Sorting

• Assume we have n elements to sort

– And for simplicity, none are equal (no duplicates)

• How many permutations (possible orderings) of the elements?

• Example, n=3, six possibilities

a[0]<a[1]<a[2] a[0]<a[2]<a[1] a[1]<a[0]<a[2]

a[1]<a[2]<a[0] a[2]<a[0]<a[1] a[2]<a[1]<a[0]

• In general, n choices for least element, then n-1 for next, then

n-2 for next, …

– n(n-1)(n-2)…(2)(1) = n! possible orderings

2/11/2019 6

Describing every comparison sort

• A different way of thinking of sorting is that the sorting algorithm

has to “find” the right answer among the n! possible answers

– Starts “knowing nothing”, “anything is possible”

– Gains information with each comparison, eliminating some

possiblities

• Intuition: At best, each comparison can eliminate half of

the remaining possibilities

– In the end narrows down to a single possibility

2/11/2019 7

Counting Comparisons

• Don’t know what the algorithm is, but it cannot make progress

without doing comparisons

– Eventually does a first comparison “is a < b ?"

– Can use the result to decide what second comparison to do

– Etc.: comparison k can be chosen based on first k-1 results

• What is the first comparison in:

– Selection Sort?

– Insertion Sort?

– Quicksort?

– Mergesort?

2/11/2019 8

Counting Comparisons

• Don’t know what the algorithm is, but it cannot make progress

without doing comparisons

– Eventually does a first comparison “is a < b ?"

– Can use the result to decide what second comparison to do

– Etc.: comparison k can be chosen based on first k-1 results

• Can represent this process as a decision tree

– Nodes contain “set of remaining possibilities”

– At root, anything is possible; no option eliminated

– Edges are “answers from a comparison”

– The algorithm does not actually build the tree; it’s what our

proof uses to represent “the most the algorithm could know

so far” as the algorithm progresses

2/11/2019 9

One Decision Tree for n=3

a < b < c, b < c < a,

a < c < b, c < a < b,

b < a < c, c < b < a

a < b < c

a < c < b

c < a < b

b < a < c

b < c < a

c < b < a

a < b < c

a < c < b

c < a < b

a < b < c a < c < b

b < a < c

b < c < a

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

• The leaves contain all the possible orderings of a, b, c

• A different algorithm would lead to a different tree

2/11/2019 10

Example if a < c < b

a < b < c, b < c < a,

a < c < b, c < a < b,

b < a < c, c < b < a

a < b < c

a < c < b

c < a < b

b < a < c

b < c < a

c < b < a

a < b < c

a < c < b

c < a < b

a < b < c a < c < b

b < a < c

b < c < a

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

possible orders

actual order

2/11/2019 11

What the decision tree tells us
• A binary tree because each comparison has 2 outcomes

– Perform only comparisons between 2 elements; binary result

• Ex: Is a<b? Yes or no?

– We assume no duplicate elements

– Assume algorithm doesn’t ask redundant questions

• Because any data is possible, any algorithm needs to ask enough

questions to produce all n! answers

– Each answer is a different leaf

– So the tree must be big enough to have n! leaves

– Running any algorithm on any input will at best correspond to

a root-to-leaf path in some decision tree with n! leaves

– So no algorithm can have worst-case running time better than

the height of a tree with n! leaves

• Worst-case number-of-comparisons for an algorithm is an

input leading to a longest path in algorithm’s decision tree

2/11/2019 12

Where are we
Proven: No comparison sort can have worst-case running time better

than: the height of a binary tree with n! leaves

– Turns out average-case is same asymptotically

– A comparison sort could be worse than this height, but it cannot

be better

– Fine, how tall is a binary tree with n! leaves?

Now: Show that a binary tree with n! leaves has height (n log n)

– That is, n log n is the lower bound, the height must be at least

this, could be more, (in other words your comparison sorting

algorithm could take longer than this, but it won’t be faster)

– Factorial function grows very quickly

Then we’ll conclude that: (Comparison) Sorting is (n log n)

– This is an amazing computer-science result: proves all the

clever programming in the world can’t sort in linear time!
2/11/2019 13

Lower bound on Height

• A binary tree of height h has at most how many

leaves?

L ≤ ______________

• A binary tree with L leaves has height at least:

h ≥ ______________

• The decision tree has how many leaves: _______

• So the decision tree has height:

h ≥ ______________

2/11/2019 14

Lower bound on Height

• A binary tree of height h has at most how many

leaves?

L ≤ 2h

• A binary tree with L leaves has height at least:

h ≥ log2 L

• The decision tree has how many leaves: N!

• So the decision tree has height:

h ≥ log2 N!

2/11/2019 15

Lower bound on height

• The height of a binary tree with L leaves is at least log2 L

• So the height of our decision tree, h:

h log2 (n!) property of binary trees

= log2 (n*(n-1)*(n-2)…(2)(1)) definition of factorial

= log2 n + log2 (n-1) + … + log2 1 property of logarithms

 log2 n + log2 (n-1) + … + log2 (n/2) keep first n/2 terms

 (n/2) log2 (n/2) each of the n/2 terms left is log2 (n/2)

= (n/2)(log2 n - log2 2) property of logarithms

= (1/2)nlog2 n – (1/2)n arithmetic

“=“ (n log n)

2/11/2019 16

The Big Picture

2/11/2019 17

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

Shell sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

sorting

How???

• Change the model – assume

more than ‘compare(a,b)’

BucketSort (a.k.a. BinSort)

• If all values to be sorted are known to be integers between 1

and K (or any small range),

– Create an array of size K, and put each element in its proper

bucket (a.ka. bin)

– If data is only integers, no need to store more than a count of

how many times that bucket has been used

• Output result via linear pass through array of buckets

2/11/2019 18

count array

1

2

3

4

5

• Example:

K=5

Input: (5,1,3,4,3,2,1,1,5,4,5)

output:

BucketSort (a.k.a. BinSort)

• If all values to be sorted are known to be integers between 1

and K (or any small range),

– Create an array of size K, and put each element in its proper

bucket (a.ka. bin)

– If data is only integers, no need to store more than a count of

how many times that bucket has been used

• Output result via linear pass through array of buckets

2/11/2019 19

count array

1 3

2 1

3 2

4 2

5 3

• Example:

K=5

input (5,1,3,4,3,2,1,1,5,4,5)

output: 1,1,1,2,3,3,4,4,5,5,5

What is the running time?

Analyzing bucket sort

• Overall: O(n+K)

– Linear in n, but also linear in K

– (n log n) lower bound does not apply because this is not a

comparison sort

• Good when range, K, is smaller (or not much larger) than n

– (We don’t spend time doing lots of comparisons of duplicates!)

• Bad when K is much larger than n

– Wasted space; wasted time during final linear O(K) pass

• For data in addition to integer keys, use list at each bucket

2/11/2019 20

Bucket Sort with Data

• Most real lists aren’t just #’s; we have data

• Each bucket is a list (say, linked list)

• To add to a bucket, place at end O(1) (keep pointer to last element)

count array

1

2

3

4

5

• Example: Movie ratings:

1=bad,… 5=excellent

• Input=

5: Casablanca

3: Harry Potter movies

1: Rocky V

5: Star Wars

Rocky V

Harry Potter

Casablanca Star Wars

Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars

This result is stable; Casablanca still before Star Wars

2/11/2019 21

Bucket sort illustrates

a more general trick:

How might you implement

a heap for a small range of

integer priorities in a

similar manner…

Radix sort

• Radix = “the base of a number system”

– Examples will use 10 because we are used to that

– In implementations use larger numbers

• For example, for ASCII strings, might use 128

• Idea:

– Bucket sort on one digit at a time

• Number of buckets = radix

• Starting with least significant digit, sort with Bucket Sort

• Keeping sort stable

– Do one pass per digit

• Invariant: After k passes, the last k digits are sorted

• Aside: Origins go back to the 1890 U.S. census

2/11/2019 22

Example

Radix = 10

Input: 478

537

9

721

3

38

143

67

2/11/2019 23

First pass:

1. bucket sort by ones digit

2. Iterate thru and collect into a list

• List is sorted by first digit

1

721

2 3

3

143

4 5 6 7

537

67

8

478

38

9

9

0

Order now:721

3

143

537

67

478

38

9

Example

2/11/2019 24

Second pass:

stable bucket sort by tens digit

If we chop off the 100’s place,

these #s are sorted

1

721

2 3

3

143

4 5 6 7

537

67

8

478

38

9

9

0

Order now: 3

9

721

537

38

143

67

478

Radix = 10

Order was: 721

3

143

537

67

478

38

9

1 2

721

3

537

38

4

143

5 6

67

7

478

8 90

3

9

Example

2/11/2019 25

Third pass:

stable bucket sort by 100s digit

Only 3 digits: We’re done!

Order now: 3

9

38

67

143

478

537

721

Radix = 10

1

143

2 3 4

478

5

537

6 7

721

8 90

3

9

38

67Order was: 3

9

721

537

38

143

67

478

1 2

721

3

537

38

4

143

5 6

67

7

478

8 90

3

9

2/11/2019

RadixSort

• Input:126, 328, 636, 341, 416, 131, 328

0 1 2 3 4 5 6 7 8 9

BucketSort on lsd:

0 1 2 3 4 5 6 7 8 9

BucketSort on next-higher digit:

0 1 2 3 4 5 6 7 8 9

BucketSort on msd:

Student Activity

26

Analysis of Radix Sort
Performance depends on:

• Input size: n

• Number of buckets = Radix: B

– e.g. Base 10 #: 10; binary #: 2; Alpha-numeric char: 62

• Number of passes = “Digits”: P

– e.g. Ages of people: 3; Phone #: 10; Person’s name: ?

• Work per pass is 1 bucket sort: ___________

– Each pass is a Bucket Sort

• Total work is _____________

– We do ‘P’ passes, each of which is a Bucket Sort

2/11/2019 27

Analysis of Radix Sort
Performance depends on:

• Input size: n

• Number of buckets = Radix: B

– e.g. Base 10 #: 10; binary #: 2; Alpha-numeric char: 62

• Number of passes = “Digits”: P

– e.g. Ages of people: 3; Phone #: 10; Person’s name: ?

• Work per pass is 1 bucket sort: O(B+n)

– Each pass is a Bucket Sort

• Total work is O(P(B+n))

– We do ‘P’ passes, each of which is a Bucket Sort

2/11/2019 28

Comparison to Comparison Sorts

Compared to comparison sorts, sometimes a win, but often not

– Example: Strings of English letters up to length 15

• Approximate run-time: 15*(52 + n)

• This is less than n log n only if n > 33,000

• Of course, cross-over point depends on constant factors

of the implementations plus P and B

– And radix sort can have poor locality properties

– Not really practical for many classes of keys

• Strings: Lots of buckets

2/11/2019 29

Recap: Features of Sorting Algorithms

In-place

– Sorted items occupy the same space as the original items.

(No copying required, only O(1) extra space if any.)

Stable

– Items in input with the same value end up in the same order

as when they began.

Examples:

• Merge Sort - not in place, stable

• Quick Sort - in place, not stable

2/11/2019 30

Sorting massive data: External Sorting

Need sorting algorithms that minimize disk/tape access time:

• Quicksort and Heapsort both jump all over the array, leading to

expensive random disk accesses

• Mergesort scans linearly through arrays, leading to (relatively)

efficient sequential disk access

Basic Idea:

• Load chunk of data into Memory, sort, store this “run” on disk/tape

• Use the Merge routine from Mergesort to merge runs

• Repeat until you have only one run (one sorted chunk)

• Mergesort can leverage multiple disks

• Weiss gives some examples

31

Sorting Summary

• Simple O(n2) sorts can be fastest for small n

– selection sort, insertion sort (latter linear for mostly-sorted)

– good for “below a cut-off” to help divide-and-conquer sorts

• O(n log n) sorts

– heap sort, in-place but not stable nor parallelizable

– merge sort, not in place but stable and works as external sort

– quick sort, in place but not stable and O(n2) in worst-case

• often fastest, but depends on costs of comparisons/copies

• (n log n) is worst-case and average lower-bound for sorting by

comparisons

• Non-comparison sorts

– Bucket sort good for small number of key values

– Radix sort uses fewer buckets and more phases

• Best way to sort? It depends!

2/11/2019 32

