Name;

UW NetlID:

CSE 332 Summer 2018: Final Exam Part 2

(closed book, closed notes, no calculators)

Instructions: Read the directions for each question carefully. We can only give partial

credit based on the work you write down, so show your work.

For questions where you are drawing pictures, please circle your final answer.

Unless otherwise noted, any algorithms or code you write should be as efficient as possible,

both in O() terms and with respect to constant factors.

Take a deep breath.
BEvery tree is a forest.
You got this.
Good Luck!
Total: 80 points. Time: 60 minutes.
Question Max Points | Score
7. B-Trees 6
8. Hash Tables 13
9. Minimum Spanning Trees 14
10. Shortest Paths 7
11. Graph Representations 14
12. Using Graphs 12
13. P vs. NP 14
Day 2 Total 80

15

7 B-Trees

[6 points]

Below is a B-Tree storing integer keys with character values. Insert the (key, value) pairs
(3,F) and (1,W) in that order into the B-Tree below. You should draw two B-trees: one for
efter (3,F) was inserted and one after both were inserted.

2 A 5 8 r4
4 6 G | Y
7 E

16

8 Hashing
[13 points]

Insert the following keys into the hash tables below, where the hash function is just %TableSize.
In the top table, resolve collisions with quadratic probing. In the bottom table resolve by
separate chaining info a sorted linked list (with the smallest element at the head of the list).

If an insertion fails, record which key failed, but attempt to insert any later keys in the list.
Do not resize the tables. [8 points]

Insert these keys: 22, 14, 32, 42, 37, 13

0 1 2 3 4 5 6 7 - 8 9

What are the load factors of the top and bottom hash tables? [1 point]

17

Under what conditions can we guarantee that insertion will succeed in a hash table using
quadratic probing? [2 points]

What is the worst case running time to insert into each of these hash tables? Justify your
answer (with 1-2 sentences) in each case. [2 points]

18

9 MSTs

(14 points; 7 points per algorithm)

In class, we discussed two algorithms for finding a minimum spanning tree of a graph.
Execute both algorithms for the graph below. We have provided space to show your work.
You must show your work, crossing out old variable values when they are overwritten (as
shown in lecture and section). Highlight the edges that end up in the final spanning tree.

Vertex | Distance Best Edge Processed

MmO |@|>»

Which algorithm did you execute?

19

Edge include? | Reason

(A,C)

(E,F)

(B,E)

(C,E)

(C,D)

(A,B)

(D,F)

(AE)

(B,C)

(A,D)

Which algorithm did you execute?

20

10 Shortest Paths
[7 points]

Run Dijkstra’s algorithm on the graph below with starting point s. Fill out the tahle. As
you're performing the algorithm cross out previous values as shown in lecture and section.

If you ever need to break a tie between two vertices in your algorithm, choose the one which
is first alphabetically.

Vertex |Distance Predecessor Processed

<|X|g|<|c|]*rti@»n

What is the shortest path from s to ¢? Describe how you found it using the results of the
algorithm.

21

11 Graph Representation
[14 points; 7 points each]

1. Hank Levy and the rest of the CSE leadership team need your help. A very important
donor wants to tour CSE2 tomorrow, but- there’s a problem: they haven't started
carpeting the hallways, and it would be embarrassing for the donor to step on un-
carpeted floors. Hank's goal is to carpet enough hallways to allow him to give a tour
(using only carpeted hallways), and to get the carpeting done as quickly as possible.
Hank shows you a graph representation of the building. He has a vertex for each room
the donor simply must see and edges representing the unfinished hallways connecting
them. Each edge is also labeled with the time it would take to carpet that hallway.
Hank has & (single) carpeting team ready to work until the donors arrive, but they
need to know which hallways to carpet and in what order to allow for the tour to be
fully-carpeted.

Will you be able to tell Hank how to direct the carpeting team? If so, describe an
efficient algorithm to run, and briefly explain why it produces the right answer. You
may call any of the graph algorithms we've discussed in class. If not, informally argue
why you shouldn’t be expected to find the optimal carpeting scheme.

22

2. Puppy Dubs’s handlers have decided he doesn’t follow enough accounts on Twitter.
They tell you they’d like to follow any account that:

e Follows Puppy Dubs or
e Follows someone who follows Puppy Dubs.

You are given a graph representation of Twitter, stored as an adjacency list (see class
definitions below). In the graph there is an edge from userl to user2 if and only if
userl follows user2. Recall that “follows” is not symmetric, so the graph is directed.

Give pseudocode for an efficient algorithm to find everyone Puppy Dubs should follow.
You may call any of the graph algorithms we've discussed in class. You may assume
all classes have appropriate constructors and iterators.

HINT: the most efficient algorithm begins by altering the graph.

public class Graph{
Vertex[] Vertices;
//methods and constructors omitted.

+

public class Vertex{
HashTable<V> outNeighbors;
//any other fields required to run your algorithms.

Continue your algorithm on the next page if you need more space.

23

Continue your algorithm description here, if necessary

What is the running time of your algorithm (briefly justify your answer)?

24

?.2 . Using Graphs

12 points]

Pac-Man just arrived in a new world, represented as a directed graph. Each vertex
represents a location with a single Pac-Dot (the food that Pac-Man eats), and there is
an edge from vertex u to vertex v if Pac-Man can move from u to v. Pac-Man would
like to eat all of the Pac-Dots, but he is worried that the graph may not be connected

enough.

What are the strongly connected components of the graph above? The name of the
vertex Pac-Man is sitting on is s. {3 points]

On this particular graph (with Pac-Man at his current location) can he eat all the
Pac-dots? Justify your answer [2 points]

25

[7 points] There is a general strategy (i.e. an efficient algortihm) for Pac-Man to tell
whether he can eat all the Pac-Dots. Describe such an algorithm. You may use any
algorithms discussed in class as black boxes.

This algorithm is trickier than previous questions. We will award partial credit for
answers which handle special cases. We recommend you think about the example

graph:

What is the running time of your algorithm (justify your answer)?

26

13 P, NP

[14 pointsf

1. What do the letters NP stand for? [2 points]

2. For the following problems, circle all the classes to which the problem is known to

belong [2 points each]

Determine if the minimum spanning tree
of a graph has & total weight of at least &

Given a graph, determine if there is a path
of length at least k from s to ¢.

Given a graph, determine if there is a pair
of vertices at distance at least k from each
other

P

NP

NP

NP

NP-
complete

NP-
complete

NP-
complete

Briefly justify why each of these statements are true or false. [2 points each]

NP-hard

NP-hard

NP-hard

3. True or false: If we discover an efficient (i.e. polynomial time) algorithm for any NP
problem, then we will have an efficient algorithm for all problems in NP.

4. True or false: If P = NP, then all decision problems can be solved in polynomial time.

5. True or false: NP-complete problems are rare — only a few dozen are known.

27

Some Useful Facts

When we're using the tree method to solve a recurrence, we usually use the following steps:

Draw a few levels of the tree.
. Let the root node be at level 0. Give a formula for the size of the input at level 7.
. What is the number of nodes at level 7?7

. What is the work done at the i*® recursive level?

. What is the work done at the base case?

0.
1
2
3
4. What is the last level of the tree?
5
6. Write an expression for the total work done.
7

. Simplify until you have a “closed form” (i.e. no summations or recursion).

Geometric series identities:

k o
. okt _q - 1
I e
Ec == 3 Ec—l_clflc|<1

i=0 i=0

Common Summations:

n n n 2 2
2,=n(n+1) izr__n(n+1)(2n+1) z_azn(n+1)
Z_ 2 Z._ 6 23S T
i=0 i=0 i=0
Log identities:
logy(a)
logu(c} _ logs(a) = -od
a =c logy(a) =
(@) log,(b)

Master Theorem:
Given a recurrence of the following form:

(n) = d if n € some constant
aT(n/b} +n° otherwise

with a, b, ¢ are constants.

If logy(a) < ¢ then T'(n) is ©(n°)

If logy(a) = c then T(n) is ©(n°logn)
If logy(a) > c then T'(n) is © (nl&s(=))

29

