Section 8: Minimax & Alpha Beta Pruning

CSE 332 19Au

University of Washington

November 14, 2019

A Game algorithm: Minimax

Some backgrounds on the game
» Let's assume that our opponent plays optimally

» Let's assume that we evaluate the game using positive values, and opponent does so
using negative values (zero-sum)

A Game algorithm: Minimax

Some backgrounds on the game
» Let's assume that our opponent plays optimally

» Let's assume that we evaluate the game using positive values, and opponent does so
using negative values (zero-sum)

Game strategies
» My gain is my opponent’s loss (and vice versa)
If the position value is 50 for me, it should be —50 for my opponent.

v

If | reach +oc0, | win; if my opponent reaches —oco, he/she wins.
So | want to MAXIMIZE my score, while my opponent wants to MINIMIZE the score

v

v

\4

Thus, Minimax.

Introducing the players!

For the following slides, assume:
» It's blue’s turn!
» MIN wants to minimize the value

» MAX wants to maximize the value

Minimax, Code 3

int minimax(Position p, boolean is_max) {
if (p is a leaf) {
// always position value of MAX
return p.evaluate();
}
if (is_max) { // MAX

int bestValue = —oo

for (move in p.getMoves()) {
p.applyMove ();
int value = minimax(p, is_max);
p.undoMove () ;

if (value > bestValue) {

bestValue = value; The highlighted parts are the only

b .
} differences!
} else { // MIN

int bestValue = oo

for (move in p.getMoves()) {
p.applyMove () ;
int value = minimax(p, is_max);
p.undoMove () ;
if (value < bestValue) {

bestValue = value;
¥
}

How do we simplify Minimax?

A fact

max(a, b) = — min(—a, —b)

How do we simplify Minimax?

A fact

max(a, b) = — min(—a, —b)

Change Minimax Code
Then...
» For MAX player's turn, we negate the negative values returned by MIN, and find max

» For MIN player’s turn, we negate the positive values returned by MAX, and find max,
which is equivalent to find min.

» Now both players are maximizing, we can use the same piece of code.

MiniNegamax

Code from your Game handout:

int minimax (Position p) {

if (p is a leaf) {
// position wvalue of current player
return p.evaluate();

}

int bestValue = —00

for (move in p.getMoves()) {
p-applyMove () ;
int value = -minimax(p) ;
p-undoMove () ;
if (value > bestValue) {

bestValue = value;

3

2% O
@ @ @ @
WS DO O ©©

2% O
@ @& @ @
WS DO O ©©

O O
@ @& @ @
WS DO O ©©

O O
@ @& @ @
WS DO O ©©

Did we need to look at every leaf node?

10

Did we need to look at every leaf node?

&

@

o

11

Did we need to look at every leaf node?

12

Did we need to look at every leaf node? 13

Now, without looking at 10, we know that the minimizer will give a score that is < 3, yet the
root maximizer already has a > 10 guarantee. So we don't need to look at 10 really.

To formalize this process...

Alpha beta pruning

We are going to use two helper values:
» «: best option along the path to the root for MAX
» (3. best option along the path to the root for MIN

14

Pruning when...
» If the value of a MAX node is larger than 3, or

» if the value of a MIN node is smaller than «

Overall, this means when « is larger than 3, we prune the children of the current node.

Alpha beta demo!

'https://www.youtube . com/watch?v=xBXHtz4Gbdo&kt=614s

15

https://www.youtube.com/watch?v=xBXHtz4Gbdo&t=614s

	Introduction
	Minimax

