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A Game algorithm: Minimax

Some backgrounds on the game
» Let's assume that our opponent plays optimally

» Let's assume that we evaluate the game using positive values, and opponent does so
using negative values (zero-sum)
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Game strategies
» My gain is my opponent’s loss (and vice versa)
If the position value is 50 for me, it should be —50 for my opponent.

v

If | reach +oc0, | win; if my opponent reaches —oco, he/she wins.
So | want to MAXIMIZE my score, while my opponent wants to MINIMIZE the score
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Thus, Minimax.




Introducing the players!

For the following slides, assume:
» It's blue’s turn!
» MIN wants to minimize the value

» MAX wants to maximize the value



Minimax, Code 3

int minimax(Position p, boolean is_max) {
if (p is a leaf) {
// always position value of MAX
return p.evaluate();
}
if (is_max) { // MAX

int bestValue = —oo

for (move in p.getMoves()) {
p.applyMove ();
int value = minimax(p, is_max);
p.undoMove () ;

if (value > bestValue) {

bestValue = value; The highlighted parts are the only

b .
} differences!
} else { // MIN

int bestValue = oo

for (move in p.getMoves()) {
p.applyMove () ;
int value = minimax(p, is_max);
p.undoMove () ;
if (value < bestValue) {

bestValue = value;
¥
}



How do we simplify Minimax?

A fact

max(a, b) = — min(—a, —b)
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Change Minimax Code
Then...
» For MAX player's turn, we negate the negative values returned by MIN, and find max

» For MIN player’s turn, we negate the positive values returned by MAX, and find max,
which is equivalent to find min.

» Now both players are maximizing, we can use the same piece of code.




MiniNegamax

Code from your Game handout:

int minimax (Position p) {

if (p is a leaf) {
// position wvalue of current player
return p.evaluate();

}

int bestValue = —00

for (move in p.getMoves()) {
p-applyMove () ;
int value = -minimax(p) ;
p-undoMove () ;
if (value > bestValue) {

bestValue = value;
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Did we need to look at every leaf node?
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Now, without looking at 10, we know that the minimizer will give a score that is < 3, yet the
root maximizer already has a > 10 guarantee. So we don't need to look at 10 really.



To formalize this process...

Alpha beta pruning

We are going to use two helper values:
» «: best option along the path to the root for MAX
» (3. best option along the path to the root for MIN
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Pruning when...
» If the value of a MAX node is larger than 3, or

» if the value of a MIN node is smaller than «

Overall, this means when « is larger than 3, we prune the children of the current node.




Alpha beta demo!

'https://www.youtube . com/watch?v=xBXHtz4Gbdo&kt=614s
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