CSE 332: Data Structures and Parallelism

Section 3: Recurrences and Closed Forms Solutions

0. Not to Tree

For the following code snippet, find a recurrence for the worst case runtime of the function, and then find a closed form for the recurrence.

Consider the function f :
f(n) \{
if ($\mathrm{n}<=0$) \{
return 1;
\}
return 2 * $f(n-1)+1$;
\}

- Find a recurrence for $f(n)$.

Solution:

$$
T(n)= \begin{cases}c_{0} & \text { if } n<=0 \\ T(n-1)+c_{1} & \text { otherwise }\end{cases}
$$

- Find a closed form for $f(n)$.

Solution:

Unrolling the recurrence, we get $T(n)=\underbrace{c_{1}+c_{1}+\cdots+c_{1}}_{n \text { times }}+c_{0}=c_{1} n+c_{0}$.

1. To Tree

Consider the function h :

```
h(n) {
    if (n <= 1) {
        return 1
    } else {
        return h(n/2) + n + 2*h(n/2)
    }
}
```

(a) Find a recurrence $T(n)$ modeling the worst-case runtime complexity of $h(n)$.

Solution:

$$
T(n)= \begin{cases}c_{0} & \text { if } n \leq 1 \\ 2 T\left(\frac{n}{2}\right)+c_{1} & \text { otherwise }\end{cases}
$$

(b) Find a closed form to your answer for (a).

Solution:

The recursion tree has height $\lg (n)$, each non-leaf level i has has work $c_{1} 2^{i}$, and the leaf level has work $c_{0} 2^{\lg (n)}$. Putting this together, we have:

$$
\begin{aligned}
\left(\sum_{i=0}^{\lg n-1} c_{1} 2^{i}\right)+c_{0} 2^{\lg (n)}=c_{1}\left(\sum_{i=0}^{\lg n-1} 2^{i}\right)+c_{0} n & =c_{1} \frac{1-2^{\lg n-1+1}}{1-2}+c_{0} n \\
& =c_{1} 2^{\lg n}-c_{1}+c_{0} n \\
& =c_{1}(n-1)+c_{0} n \\
& =\left(c_{0}+c_{1}\right) n-c_{1}
\end{aligned}
$$

2. To Tree or Not to Tree

Consider the function f. Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh bound for this recurrence.

```
f(n) {
    if (n == 0) {
        return 0
    }
    int result = f(n/2)
    for (int i = 0; i < n; i++) {
    result *= 4
    }
    return result + f(n/2)
}
```

(a) Find a recurrence $T(n)$ modeling the worst-case time complexity of $f(n)$.

Solution:

We look at the three separate components (base case, non-recursive work, recursive work). The base case is a constant amount of work, because we only do a return statement. We'll label it c_{0}. The non-recursive work is a constant amount of work (we'll call it c_{1}) for the assignments and if tests and a constant (we'll call c_{2}) multiple of n for the loops. The recursive work is $2 T\left(\frac{n}{2}\right)$.
Putting these together, we get:

$$
T(n)= \begin{cases}c_{0} & \text { if } n=0 \\ 2 T\left(\frac{n}{2}\right)+c_{2} n+c_{1} & \text { otherwise }\end{cases}
$$

(b) Find a closed form for $f(n)$

Solution:

The recursion tree has $\lg (n)$ height, each non-leaf node of the tree does $c_{2} \frac{n}{2^{i}}+c_{1}$ work, each leaf node does c_{0} work, and each level has 2^{i} nodes.
So, the total work is $\sum_{i=0}^{\lfloor\lg (n)\rfloor-1} 2^{i}\left(c_{2} \frac{n}{2^{i}}+c_{1}\right)+c_{0} \cdot 2^{\lg n}=\sum_{i=0}^{\lfloor\lg (n)\rfloor-1} 2^{i} c_{1}+c_{2} n+c_{0} n=c_{1} \frac{1-2^{\lg n}}{1-2}+$ $c_{2} n(\lg (n)-1)+c_{0} n=c_{2} n(\lg (n)-1)+c_{1}(n-1)+c_{0} n$.

3. Big-Oof Bounds

Consider the function f. Find a recurrence modeling the worst-case runtime of this function and then find a Big-Oh bound for this recurrence.

```
f(n) {
    if (n == 0) {
        return 0
    }
    int result = 0
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < i; j++) {
            result += j
        }
    }
    return f(n/2) + result + f(n/2)
}
```

(a) Find a recurrence $T(n)$ modeling the worst-case time complexity of $f(n)$.

Solution:

We look at the three separate components (base case, non-recursive work, recursive work). The base case is a constant amount of work, because we only do a return statement. We'll label it c_{0}. The non-recursive work is a constant amount of work (we'll call it c_{1}) for the assignments and if tests and a constant (we'll call c_{2}) multiple of $\sum_{i=0}^{n-1} i=\frac{n(n-1)}{2}$ for the loops. The recursive work is $2 T\left(\frac{n}{2}\right)$.
Putting these together, we get:

$$
T(n)= \begin{cases}c_{0} & \text { if } n=0 \\ 2 T\left(\frac{n}{2}\right)+c_{2} \frac{n(n-1)}{2}+c_{1} & \text { otherwise }\end{cases}
$$

(b) Find a Big-Oh bound for your recurrence.

Solution:

Since we only want a Big-Oh, we can actually leave off lower-order terms when doing our analysis, as they won't affect the runtime bounds; so, we can ignore the constants c_{1} and c_{2} in our analysis.
Note that $\frac{n(n-1)}{2}=\frac{n^{2}}{2}-\frac{n}{2} \in \mathcal{O}\left(n^{2}\right)$. We can, again, ignore the lower-order term ($\frac{n}{2}$) since we only want a Big-Oh bound.
The recursion tree has $\lg (n)$ height, each non-leaf node of the tree does $\left(\frac{n}{2^{i}}\right)^{2}$ work, each leaf node does c_{0} work, and each level has 2^{i} nodes.
So, the total work is $\sum_{i=0}^{\lfloor\lg (n)\rfloor-1} 2^{i}\left(\frac{n}{2^{i}}\right)^{2}+c_{0} \cdot 2^{\lg n}=n^{2} \sum_{i=0}^{\lfloor\lg (n)\rfloor-1}\left(\frac{2^{i}}{4^{i}}\right)+c_{0} n<n^{2} \sum_{i=0}^{\infty}\left(\frac{1}{2^{i}}\right)+c_{0} n=$ $\frac{n^{2}}{1-\frac{1}{2}}+c_{0} n$.
This expression is upper-bounded by n^{2} so $T \in \mathcal{O}\left(n^{2}\right)$.

4. Odds Not in Your Favor

Consider the function g. Find a recurrence modeling the worst-case runtime of this function, and then find a closed form for the recurrence.

```
g(n) {
    if (n <= 1) {
    return 1000
    }
    if (g(n/3) > 5) {
    for (int i = 0; i < n; i++) {
        println("Yay!")
    }
    return 5 * g(n/3)
    }
    else {
        for (int i = 0; i < n * n; i++) {
            println("Yay!")
        }
        return 4 * g(n/3)
    }
}
```

(a) Find a recurrence $T(n)$ modeling the worst-case time complexity of $g(n)$.

Solution:

$$
T(n)= \begin{cases}c_{0} & \text { if } n \leq 1 \\ 2 T\left(\frac{n}{3}\right)+c_{1} n & \text { otherwise }\end{cases}
$$

(b) Find a closed form for the above recurrence.

Solution:

The recursion tree has height $\log _{3}(n)$, each non-leaf level i has work $\frac{c_{1} n 2^{i}}{3^{i}}$, and the leaf level has work $c_{0} 2^{\log _{3}(n)}$. Putting this together, we have:

$$
\begin{aligned}
\sum_{i=0}^{\log _{3}(n)-1}\left(\frac{c_{1} n 2^{i}}{3^{i}}\right)+c_{0} 2^{\log _{3}(n)} & =c_{1} n \sum_{i=0}^{\log _{3}(n)-1}\left(\frac{2}{3}\right)^{i}+c_{0} n^{\log _{3}(2)} \\
& =c_{1} n\left(\frac{1-\left(\frac{2}{3}\right)^{\log _{3}(n)}}{1-\frac{2}{3}}\right)+c_{0} n^{\log _{3}(2)} \quad \text { By finite geometric series } \\
& =3 c_{1} n\left(1-\left(\frac{2}{3}\right)^{\log _{3}(n)}\right)+c_{0} n^{\log _{3}(2)} \\
& =3 c_{1} n\left(1-\frac{n^{\log _{3}(2)}}{n}\right)+c_{0} n^{\log _{3}(2)} \\
& =3 c_{1} n-3 c_{1} n^{\log _{3}(2)}+c_{0} n^{\log _{3}(2)}
\end{aligned}
$$

