
CSE 332: Data Structures and Parallelism
Section 1: WorkLists Solutions

WorkList ADT
add(work) Notifies the worklist that it must handle work
peek() Returns the next item to work on
next() Removes and returns the next item to work on
hasWork() Returns true if there’s any work left and false otherwise

0. Odd Jobs
For each of the following scenarios, choose
(1) an ADT: Stack or Queue , and
(2) a data structure: Array or LinkedList with front or LinkedList with front and back

Then, explain why your choice works better than the other options.

WorkList Situations
(a) You’re designing a tool that checks code to verify that all opening brackets, braces, parentheses, . . . have

closing counterparts.

Solution:
We’d use the Stack ADT, because we want to match the most recent bracket we’ve seen first.
Since Stacks push and pop on the same end, there is no reason to use an implementation with two
pointers. (We don’t need access to the “back” ever.)
Asymptotically, there is no difference between the LinkedList with a front pointer and the Array
implementation, but cache locality will likely be a problem with the LinkedList. (Remember, arrays are
contiguous in memory, but linked lists are stored using arbitrary pointers.)

(b) Disneyland has hired you to find a way to improve the processing efficiency of their long lines at attractions.
There is no way to forecast how long the lines will be.

Solution:
We’d use the Queue ADT here, because we’re dealing with. . . a line.
The important thing to note here is that if we try to use the implementation of a LinkedList with only
a front pointer, either add or next will be very slow. That is clearly not a good choice.
Arguably, the LinkedList implementation with both pointers is better than the array implementation
because we will never have to resize it.

(c) A sandwich shop wants to serve customers in the order that they arrived, but also wants to look ahead
to know what people have ordered (ej. 2nd person, 3rd person, ..., last person in line).

Solution:
This is still clearly the Queue ADT. However, if we used a LinkedList like in part b, if we were to find
a customer far from the front of the line, we would have to traverse almost the entire list.
An Array implementation would be more efficient to find specific people in line using array indexing,
which is constant time.

1



1. Trie to Delete 0’s and 1’s?
Suppose we inserted all possible binary strings of length 0-3 (ej. 1, 0, 10, ..., 110, 111) into a Trie.

(a) If we deleted all binary numbers of length 2, how many nodes would we have to delete?

Solution:
Zero nodes! We still need the nodes storing the value for binary strings of length 2 because they have
pointers to the nodes for binary strings of length 3, which still exist in the Trie. Therefore, we only set
the value to null in the node to remove the key-value pair from the Trie.

(b) After part a, if we deleted all binary numbers of length 3, how many nodes would we have to delete?

Solution:
12 nodes. Since the binary strings of length 3 are all leaf nodes, they do not have any pointers to other
relevant nodes in the Trie, so we can delete them, which is 8 nodes. However, in part a, the nodes that
use to store the binary strings of length 2 are now empty, they do not store any values, so we can delete
those as well, which is 4 nodes for a total of 12 nodes deleted.

2. Call Me Maybe
(a) Suppose you want to transfer someone’s phone book to a data structure so that you can call all the phone

numbers with a particular area code efficiently. What data structure would you use? How would you
implement it?

Solution:
One way to solve this would be using a HashMap where the keys are the area codes and the values is a list
of corresponding phone numbers. We will need to parse the phone number to get the first three numbers.
Another way to solve this is by using a Trie. We would use the entire phone number as the “route” and
insert all numbers into the trie. Then, to find all the phone numbers to call, we would use the area code
to partially travel down the Trie, then visit all children nodes to find up the phone numbers to print.

(b) What is the time complexity of your solution? What is the space complexity?

Solution:
If we compare the HashMap and TrieMap approaches, both will have the same runtime efficiency, but the
Trie will be more space-efficient in the average case.
If we let n be the total number of phone numbers and e be the expected number of phone numbers per
area code, we can find that it takes Θ(n) time to build either the HashMap or the Trie. Likewise, given
some area code, it takes Θ(e) time to visit and call each phone number.
(Initially, it may seem like the Trie would be slower due to the traversals. However, recall that the depth
of the trie is always equal to the length of a phone number, which is a constant value.)
The reason why the Trie turns out to be more space-efficient on average is because the Trie is capable of
storing near-duplicate phone numbers in less space then the HashMap. If we have the phone numbers 123-
456-7890, 123-456-7891, and 123-456-7892, the map must store each number individually whereas
the Trie is able to combine them together and only branch for the very last number.

2



3. Let’s Trie to be Old School
Text on nine keys (T9)’s objective is to make it easier to type text messages with 9 keys. It allows words to be
entered by a single keypress for each letter in which several letters are associated with each key. It combines
the groups of letters on each phone key with a fast-access dictionary of words. It looks up in the dictionary all
words corresponding to the sequence of keypresses and orders them by frequency of use. So for example, the
input ’2665’ could be the words {book, cook, cool}. Describe how you would implement a T9 dictionary for
a mobile phone.

T9 Example

Solution:
One way to implement this would be by using a Trie. The routes (branches) are represented by the digits and
the node’s values are collection of words. So if you typed in 2, 6, 6, 5, you would choose the child representing
2, then 6, then 6, then 5, traveling four layers deep into the Trie.
Then, that child node’s value would contain a collection of all dictionary words corresponding to this particular
sequence of numbers.
To populate the Trie, you would iterate through each word in the dictionary, and first convert the word into
the appropriate sequence of numbers.
Then, you would use that sequence as the key or “route” to traverse the Trie and add the word.

3


