CSE 332: Data Structures \& Parallelism Lecture 23: Disjoint Sets

Ruth Anderson

Autumn 2019

Aside: Union-Find aka Disjoint Set ADT

- Union(\mathbf{x}, \mathbf{y}) - take the union of two sets named x and y
- Given sets: $\{3, \underline{5}, 7\}$, $\{4,2, \underline{8}\},\{\underline{9}\},\{1,6\}$
- Union(5,1)

Result: $\{3, \underline{5}, 7,1,6\},\{4,2, \underline{8}\},\{\underline{9}\}$,
To perform the union operation, we replace sets x and y by $(x \cup y)$

- Find(\mathbf{x}) - return the name of the set containing x.
- Given sets: $\{3, \underline{5}, 7,1,6\},\{4,2, \underline{8}\},\{\underline{9}\}$,
- Find(1) returns 5
- Find(4) returns 8
- We can do Union in constant time.
- We can get Find to be amortized constant time (worst case $\mathrm{O}(\log n)$ for an individual Find operation).

Implementing the DS ADT

- n elements,

Total Cost of: m finds, $\leq n-1$ unions
can there be more unions?

- Target complexity: $O(m+n)$
i.e. $O(1)$ amortized
- $O(1)$ worst-case for find as well as union would be great, but... Known result: both find and union cannot be done in worst-case $O(1)$ time

Data Structure for the DS ADT

- Observation: trees let us find many elements given one root...
- Idea: if we reverse the pointers (make them point up from child to parent), we can find a single root from many elements...
- Idea: Use one tree for each equivalence class. The name of the class is the tree root.

Up-Tree for Disjoint Union/Find

Find Operation

Find (x) - follow x to the root and return the root

Union Operation

Union (x, y) - assuming x and y are roots, point y to x.

Simple Implementation

- Array of indices

	1	2			4	5		6	7
up	0	1		0	7	7		5	0

Up $[x]=0$ means \mathbf{x} is a root.

Implementation

```
int Find(int x) {
    while(up[x] != 0) {
        x = up[x];
    }
    return x;
}
```

void Union (int x, int y) \{
$\operatorname{up}[y]=x ;$
\}
runtime for Union():
runtime for Find():
runtime for m Finds and n-1 Unions:

A Bad Case

(1) 2 (n)

Find(1) n steps!!

Now this doesn't look good ©

Can we do better? Yes!

1. Improve union so that find only takes $\Theta(\log n)$

- Union-by-size
- Reduces complexity to $\Theta(m \log n+n)$

2. Improve find so that it becomes even better!

- Path compression
- Reduces complexity to almost $\Theta(m+n)$

Weighted Union/Union by Size

- Weighted Union
- Always point the smaller (total \# of nodes) tree to the root of the larger tree

Example Again

(1) (2) (3) n

W-Union(2,1)

Find(1) constant time

Analysis of Weighted Union

With weighted union an up-tree of height h has weight at least 2^{h}.

- Proof by induction
- Basis: $h=0$. The up-tree has one node, $2^{0}=1$
- Inductive step: Assume true for all h ' < h.

$W\left(T_{1}\right) \geq W\left(T_{2}\right) \geq 2^{h-1}$
$\quad \begin{array}{ll}\text { Weighted } & \text { Induction } \\ \text { union } & \text { hypothesis }\end{array}$
$W(T) \geq 2^{h-1}+2^{h-1}=2^{h}$

Analysis of Weighted Union (cont)

Let T be an up-tree of weight n formed by weighted union. Let h be its height.

$$
\begin{gathered}
n \geq 2^{h} \\
\log _{2} n \geq h
\end{gathered}
$$

- Find (x) in tree T takes $O(\log n)$ time.
- Can we do better?

Worst Case for Weighted Union

n/2 Weighted Unions

n/4 Weighted Unions

Example of Worst Cast (cont')

After n/2 + n/4 + ...+ 1 Weighted Unions:

If there are $\mathbf{n}=\mathbf{2}^{\mathrm{k}}$ nodes then the longest path from leaf to root has length k.

Array Implementation

Weighted Union

```
W-Union(i,j : index) \{
    //i and j are roots
    wi := weight[i];
    wj := weight[j];
    if wi < wj then
        up[i] := j;
        weight[j] := wi + wj;
    else
        up[j] :=i;
        weight[i] := wi +wj;
\}
new runtime for Find():
runtime for \(m\) finds and \(n-1\) unions \(=\)
else
up[j] :=i;
weight[i] := wi +wj;

\section*{Nifty Storage Trick}
- Use the same array representation as before
- Instead of storing -1 for the root, simply store-size
[Read section 8.4]

\section*{How about Union-by-height?}
- Can still guarantee \(O(\log n)\) worst case depth

Left as an exercise!
- Problem: Union-by-height doesn't combine very well with the new find optimization technique we'll see next

\section*{Now this doesn't look good ©}

Can we do better? Yes!
1. DONE: Improve union so that find only takes \(\Theta(\log n)\)
- Union-by-size
- Reduces complexity to \(\Theta(m \log n+n)\)
2. NOW: Improve find so that it becomes even better!
- Path compression
- Reduces complexity to almost \(\Theta(m+n)\)

\section*{Path Compression}
- On a Find operation point all the nodes on the search path directly to the root.


\section*{Path Compression}
- On a Find operation point all the nodes on the search path directly to the root.


\section*{Student Activity}

Draw the result of Find(e):


\section*{Self-Adjustment Works}


\section*{Path Compression Find}
```

PC-Find(i : index) {
r := i;
while up[r] \not= -1 do //find root//
r := up[r];
if i f r then //compress path//
k := up[i];
while k f= r do
up[i] := r;
i := k;
k := up[k]
return(r)
}

```

\section*{Path Compression: Code}
```

int Find(Object x) {
// x had better be in
// the set!
int xID = hTable[x];
int i = xID;
// Get the root for
// this set
while(up[xID] != -1)
{
xID = up[xID];
}

```
    // Change the parent for
    // all nodes along the path
    while(up[i] != -1) \{
        temp = up [i];
        up[i] = xID;
        i = temp;
    \}
    return xID;
\}
(New?) runtime for Find:

\section*{Interlude: A Really Slow Function}

Ackermann's function is a really big function A \((x, y)\) with inverse \(\alpha(x, y)\) which is really small

How fast does \(\alpha(x, y)\) grow?
\(\alpha(x, y)=4\) for \(x\) far larger than the number of atoms in the universe \(\left(2^{300}\right)\)
\(\alpha\) shows up in:
- Computation Geometry (surface complexity)
- Combinatorics of sequences

\section*{A More Comprehensible Slow Function}

\section*{\(\log ^{*} \boldsymbol{x}=\) number of times you need to compute log to bring value down to at most 1}
\[
\begin{aligned}
& \text { E.g. } \log ^{*} 2=1 \\
& \log ^{*} 4=\log ^{*} 2^{2}=2 \\
& \log ^{*} 16=\log ^{*} 2^{22}=3 \quad(\log \log \log 16=1) \\
& \log ^{*} 65536=\log ^{*} 2^{22}=4 \quad(\log \log \log \log 65536=1) \\
& \log ^{*} 2^{65536}=\ldots \ldots \ldots \ldots .=5
\end{aligned}
\]

Take this: \(\alpha(m, n)\) grows even slower than log* \(n\) !!

\title{
Complex Complexity of Union-by-Size + Path Compression
}

Tarjan proved that, with these optimizations, \(p\) union and find operations on a set of \(n\) elements have worst case complexity of \(O(p \cdot \alpha(p, n))\)

For all practical purposes this is amortized constant time:
\(O(p-4)\) for \(p\) operations!
- Complex analysis

Disjoint Union / Find with Weighted Union and PC
- Worst case time complexity for a W-Union is \(\mathrm{O}(1)\) and for a PC-Find is \(\mathrm{O}(\log \mathrm{n})\).
- Time complexity for \(\mathrm{m} \geq \mathrm{n}\) operations on n elements is \(O\left(m \log ^{*} n\right)\) where \(\log ^{*} n\) is a very slow growing function.
- Log * \(n<7\) for all reasonable n. Essentially constant time per operation!
- Using "ranked union" gives an even better bound theoretically.

\section*{Amortized Complexity}
- For disjoint union / find with weighted union and path compression.
- average time per operation is essentially a constant.
- worst case time for a PC-Find is \(\mathrm{O}(\log n)\).
- An individual operation can be costly, but over time the average cost per operation is not.```

