

CSE 332: Data Structures & Parallelism Lecture 21: Shortest Paths

Ruth Anderson Autumn 2019

Today

- Graphs
 - Shortest Paths

Shortest Path Applications

- Network routing
- Driving directions
- Cheap flight tickets
- Critical paths in project management (see textbook)
- **–** ...

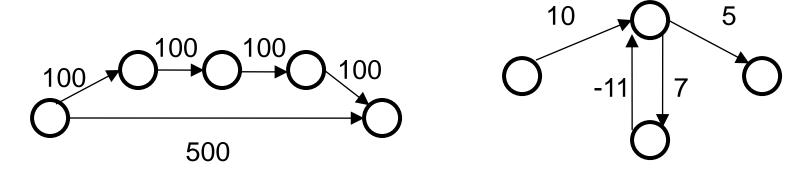
Single source shortest paths

- Done: BFS to find the minimum path length from v to u in O(|E|+|V|)
- Actually, can find the minimum path length from v to every node
 - Still O(|E|+(|V|)
 - No faster way for a "distinguished" destination in the worst-case
- Now: Weighted graphs

Given a weighted graph and node **v**, find the minimum-cost path from **v** to every node

- As before, asymptotically no harder than for one destination
- Unlike before, BFS will not work

Not as easy



Why BFS won't work: Shortest path may not have the fewest edges

Annoying when this happens with costs of flights

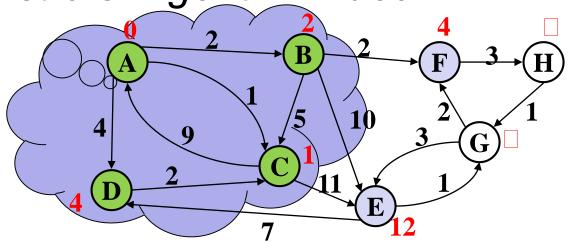
We will assume there are no negative weights

- Problem is ill-defined if there are negative-cost cycles
- Today's algorithm is wrong if edges can be negative

Dijkstra's Algorithm

- Named after its inventor Edsger Dijkstra (1930-2002)
 - Truly one of the "founders" of computer science;
 1972 Turing Award; this is just one of his many contributions
 - Sample quotation: "computer science is no more about computers than astronomy is about telescopes"
- The idea: reminiscent of BFS, but adapted to handle weights
 - Grow the set of nodes whose shortest distance has been computed
 - Nodes not in the set will have a "best distance so far"
 - A priority queue will turn out to be useful for efficiency

Dijkstra's Algorithm: Idea



- Initially, start node has cost 0 and all other nodes have cost ∞
- At each step:
 - Pick closest unknown vertex v
 - Add it to the "cloud" of known vertices
 - Update distances for nodes with edges from v
- That's it! (Have to prove it produces correct answers)

The Algorithm

- 1. For each node \mathbf{v} , set $\mathbf{v}.\mathsf{cost} = \infty$ and $\mathbf{v}.\mathsf{known} = \mathsf{false}$
- 2. Set source.cost = 0
- 3. While there are unknown nodes in the graph
 - a) Select the unknown node **v** with lowest cost
 - b) Mark v as known
 - c) For each edge (v,u) with weight w,

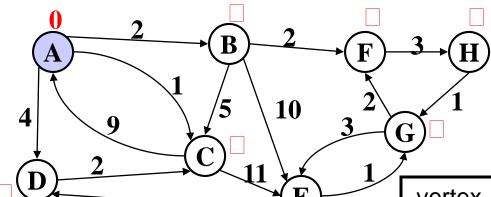
```
c1 = v.cost + w // cost of best path through v to u
c2 = u.cost // cost of best path to u previously known
if(c1 < c2) { // if the path through v is better
    u.cost = c1
    u.path = v // for computing actual paths
}</pre>
```

Important features

- Once a vertex is marked known, the cost of the shortest path to that node is known
 - The path is also known by following back-pointers

 While a vertex is still not known, another shorter path to it might still be found

Example #1



Order Added to Known Set:

vertex	known?	cost	path
Α			
В			
С			
D			
Е			
F			
G			
Н			10

Features

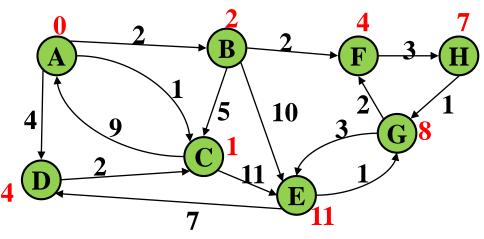
- When a vertex is marked known,
 the cost of the shortest path to that node is known
 - The path is also known by following back-pointers
- While a vertex is still not known, another shorter path to it might still be found

Note: The "Order Added to Known Set" is not important

- A detail about how the algorithm works (client doesn't care)
- Not used by the algorithm (implementation doesn't care)
- It is sorted by path-cost, resolving ties in some way

Interpreting the Results

Now that we're done, how do we get the path from, say, A to E?



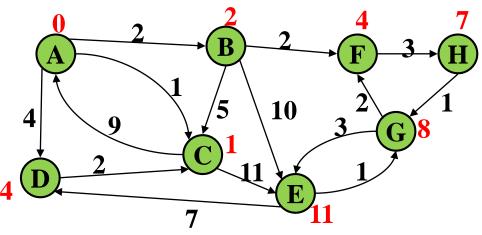
Order Added to Known Set:

A, C, B, D, F, H, G, E

vertex	known?	cost	path
А	Υ	0	
В	Υ	2	А
С	Υ	1	Α
D	Υ	4	Α
Е	Υ	11	G
F	Υ	4	В
G	Υ	8	Н
Н	Υ	7	F

Stopping Short

- How would this have worked differently if we were only interested in:
 - The path from A to G?
 - The path from A to D?

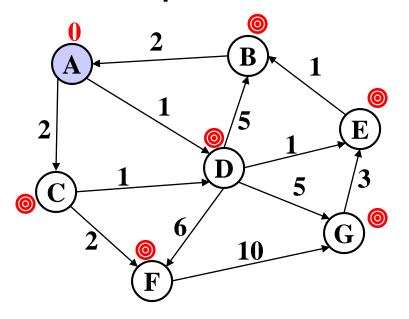


Order Added to Known Set:

A, C, B, D, F, H, G, E

vertex	known?	cost	path
А	Υ	0	
В	Υ	2	А
С	Υ	1	Α
D	Y	4	Α
E	Y	11	G
F	Υ	4	В
G	Υ	8	Н
Н	Y	7	F

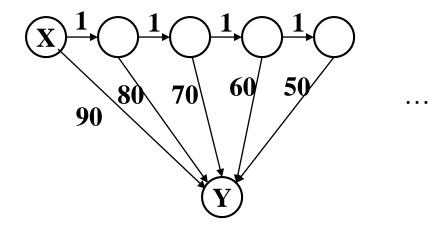
Example #2



Order Added to Known Set:

vertex	known?	cost	path
А		0	
В			
С			
D			
E			
F			
G			

Example #3



How will the best-cost-so-far for Y proceed?

Is this expensive?

A Greedy Algorithm

- Dijkstra's algorithm
 - For single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges

- An example of a greedy algorithm:
 - At each step, irrevocably does what seems best at that step
 - A locally optimal step, not necessarily globally optimal
 - Once a vertex is known, it is not revisited
 - Turns out to be globally optimal

Where are we?

- What should we do after learning an algorithm?
 - Prove it is correct
 - Not obvious!
 - We will sketch the key ideas
 - Analyze its efficiency
 - Will do better by using a data structure we learned earlier!

Correctness: Intuition

Rough intuition:

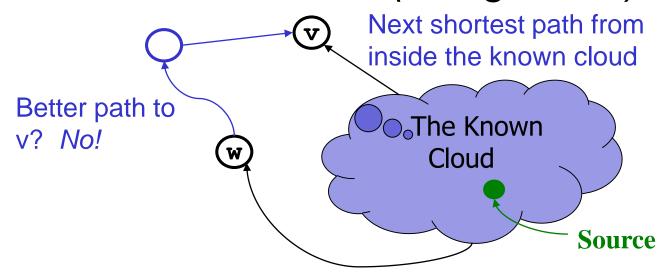
All the "known" vertices have the correct shortest path

- True initially: shortest path to start node has cost 0
- If it stays true every time we mark a node "known", then by induction this holds and eventually everything is "known"

Key fact we need: When we mark a vertex "known" we won't discover a shorter path later!

- This holds only because Dijkstra's algorithm picks the node with the next shortest path-so-far
- The proof is by contradiction...

Correctness: The Cloud (Rough Idea)



Suppose **v** is the next node to be marked known ("added to the cloud")

- The best-known path to v must have only nodes "in the cloud"
 - Since we've selected it, and we only know about paths through the cloud to a node right outside the cloud
- Assume the actual shortest path to v is different
 - It won't use only cloud nodes, (or we would know about it), so it must use non-cloud nodes
 - Let w be the first non-cloud node on this path.
 - The part of the path up to w is already known and must be shorter than the best-known path to v. So v would not have been picked.

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

Notice each edge is processed only once

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  while(not all nodes are known) {
    b = find unknown node with smallest cost
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
       if(b.cost + weight((b,a)) < a.cost){</pre>
         a.cost = b.cost + weight((b,a))
         a.path = b
```

Improving asymptotic running time

- So far: O(|V|²+ |E|)
- We had a similar "problem" with topological sort being O(|V|²+ |E|)
- due to each iteration looking for the node to process next
 - We solved it with a queue of zero-degree nodes
 - But here we need the lowest-cost node and costs can change as we process edges

Solution?

Efficiency, second approach

Use pseudocode to determine asymptotic run-time

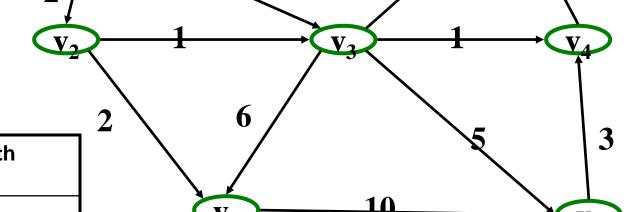
```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
 build-heap with all nodes
  while(heap is not empty) {
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
      if(b.cost + weight((b,a)) < a.cost){</pre>
        decreaseKey(a, "new cost - old cost"
        a.path = b
```

Dense vs. sparse again

- First approach: O(|V|²+ |E|) or: O(|V|²)
- Second approach: O(|V|log|V|+|E|log|V|)
- So which is better?
 - Sparse: $O(|V|\log|V|+|E|\log|V|)$ (if |E| > |V|, then $O(|E|\log|V|)$)
 - Dense: $O(|V|^2 + |E|)$, or: $O(|V|^2)$
- But, remember these are worst-case and asymptotic
 - Priority queue might have slightly worse constant factors
 - On the other hand, for "normal graphs", we might call decreaseKey rarely (or not percolate far), making |E|log|V| more like |E|

Find the shortest path to each vertex from v_0

S



V	Known	Dist from s	Path
v0			
v1			
v2			
v3			
v4			
v5			
v6	1/20/2019		

Order declared Known: