CSE 332: Data Structures \& Parallelism
Lecture 20: Topological Sort / Graph Traversals

Ruth Anderson

Autumn 2019

Today

- Graphs
- Topological Sort
- Graph Traversals

Topological Sort

Problem: Given a DAG G=(V,E), output all the vertices in order such that if no vertex appears before any other vertex that has an edge to it

Example input:

Example output:
$142,126,143,311,331,332,312,341,351,333,440,352$

Valid Topological Sorts:

Questions and comments

- Why do we perform topological sorts only on DAGs?
- Is there always a unique answer?
- What DAGs have exactly 1 answer?
- Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it

Topological Sort Uses

- Figuring out how to finish your degree
- Computing the order in which to recompute cells in a spreadsheet
- Determining the order to compile files using a Makefile
- In general, taking a dependency graph and coming up with an order of execution

A First Algorithm for Topological Sort

1. Label ("mark") each vertex with its in-degree

- Think "write in a field in the vertex"
- Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
a) Choose a vertex \mathbf{v} with labeled with in-degree of 0
b) Output \mathbf{v} and conceptually remove it from the graph
c) For each vertex \mathbf{w} adjacent to \mathbf{v} (i.e. \mathbf{w} such that (\mathbf{v}, \mathbf{w}) in \mathbf{E}),
 decrement the in-degree of \mathbf{w}

Example

Output:

Node: 126142143311312331332333341351352440 Removed? In-degree: $\begin{array}{lllllllllllll} & 0 & 0 & 2 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 1 & 1\end{array}$

Example

Node: 126142143311312331332333341351352440
Removed? x
In-degree: $\begin{array}{lllllllllllll} & 0 & 0 & 2 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 1 & 1\end{array}$
1

Example

Node: 126142143311312331332333341351352440 Removed? x x In-degree: $\begin{array}{lllllllllllll} & 0 & 0 & 2 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 1 & 1\end{array}$
1
0

Example

Node: 126142143311312331332333341351352440 Removed? x x x

In-degree:	0	0	2	1	2	1	1	2	1	1	1	1
			1	0		0			0	0		
		0										

Example

Output: 126

Node: 126142143311312331332333341351352440 Removed? x $x \quad x \quad x$

In-degree:	0	0	2	1	2	1	1	2	1	1	1	1
			1	0	1	0	0		0	0		

Example

Output: 126

Node: 126142143311312331332333341351352440 Removed? x x x x x $\begin{array}{lllllllllllll}\text { In-degree: } & 0 & 0 & 2 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\ & & & 1 & 0 & 1 & 0 & 0 & & 0 & 0 & & \end{array}$

Example

Output: 126

Node: 126142143311312331332333341351352440 Removed? x x x x x x

In-degree:	0	0	2	1	2	1	1	2	1	1	1	1
			1	0	1	0	0	1	0	0		0

Example

Output: 126

Node: 126142143311312331332333341351352440 Removed? x x x x x x x

In-degree:	0	0	2	1	2	1	1	2	1	1	1	1
			1	0	1	0	0	1	0	0		0

Example

Output: 126

Node: 126142143311312331332333341351352440 Removed? $\mathrm{x} \quad \mathrm{x} \quad \mathrm{x} \quad \mathrm{x} \quad \mathrm{x} \quad \mathrm{x} \quad \mathrm{x} \quad \mathrm{x}$ $\begin{array}{lllllllllllll}\text { In-degree: } & 0 & 0 & 2 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\ & & & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & & 0\end{array}$

Example

Output: 126

Node: 126142143311312331332333341351352440 Removed? x $\mathrm{x} \quad \mathrm{x} \quad \mathrm{x} \quad \mathrm{x} \quad \mathrm{x} \quad \mathrm{x} \quad \mathrm{x} \quad \mathrm{x}$ $\begin{array}{lllllllllllll}\text { In-degree: } & 0 & 0 & 2 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\ & & & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ & & & 0 & & 0 & & & 0 & & & & \end{array}$

Example

Node:
Removed? $\mathrm{x} \quad \mathrm{x} \quad \mathrm{x}$

In-degree:	0	0	2	1	2	1	1	2	1	1	1	1
			1	0	1	0	0	1	0	0	0	0
0		0			0							

A couple of things to note

- Needed a vertex with in-degree of 0 to start
- No cycles
- Ties between vertices with in-degrees of 0 can be broken arbitrarily
- Potentially many different correct orders

Topological Sort: Running time?

```
labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++) {
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
    w.indegree--;
}
```


Doing better

The trick is to avoid searching for a zero-degree node every time!

- Keep the "pending" zero-degree nodes in a list, stack, queue, box, table, or something
- Order we process them affects output but not correctness or efficiency provided add/remove are both $O(1)$

Using a queue:

1. Label each vertex with its in-degree, enqueue 0 -degree nodes
2. While queue is not empty
a) $\mathbf{v}=$ dequeue()
b) Output \mathbf{v} and remove it from the graph
c) For each vertex \mathbf{w} adjacent to \mathbf{v} (i.e. w such that ($\mathbf{v}, \mathbf{w})$ in \mathbf{E}), decrement the in-degree of \mathbf{w}, if new degree is 0 , enqueue it

Topological Sort(optimized): Running time?

```
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++) {
    v = dequeue();
    put v next in output
    for each w adjacent to v {
    w.indegree--;
            if(w.indegree==0)
                enqueue(w) ;
    }
}
```


Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find all nodes reachable (i.e., there exists a path) from \mathbf{v}

- Possibly "do something" for each node (an iterator!)
- E.g. Print to output, set some field, etc.

Related Questions:

- Is an undirected graph connected?
- Is a directed graph weakly / strongly connected?
- For strongly, need a cycle back to starting node

Basic idea:

- Keep following nodes
- But "mark" nodes after visiting them, so the traversal terminates and processes each reachable node exactly once

Graph Traversal: Abstract Idea

```
traverseGraph(Node start) {
    Set pending = emptySet();
    pending.add(start)
    mark start as visited
    while(pending is not empty) {
        next = pending.remove()
        for each node u adjacent to next
        if(u is not marked) {
        mark u
        pending.add(u)
        }
    }
}
```


Running time and options

- Assuming add and remove are $O(1)$, entire traversal is $O(|\mathrm{E}|)$
- Use an adjacency list representation
- The order we traverse depends entirely on how add and remove work/are implemented
- Depth-first graph search (DFS): a stack
- Breadth-first graph search (BFS): a queue
- DFS and BFS are "big ideas" in computer science
- Depth: recursively explore one part before going back to the other parts not yet explored
- Breadth: Explore areas closer to the start node first

Recursive DFS, Example : trees

- A tree is a graph and DFS and BFS are particularly easy to "see"


```
DFS (Node start) {
    mark and "process"(e.g. print) start
    for each node u adjacent to start
    if u is not marked
        DFS (u)
}
```

Order processed: A, B, D, E, C, F, G, H

- Exactly what we called a "pre-order traversal" for trees
- The marking is not needed here, but we need it to support arbitrary graphs, we need a way to process each node exactly once

DFS with a stack, Example: trees

Order processed:

- A different but perfectly fine traversal

BFS with a queue, Example: trees

Order processed:

- A "level-order" traversal

DFS/BFS Comparison

Breadth-first search:

- Always finds shortest paths, i.e., "optimal solutions
- Better for "what is the shortest path from \mathbf{x} to \mathbf{y} "
- Queue may hold $O(|\mathrm{~V}|)$ nodes (e.g. at the bottom level of binary tree of height $h, 2^{h}$ nodes in queue)

Depth-first search:

- Can use less space in finding a path
- If longest path in the graph is pand highest out-degree is d then DFS stack never has more than $\mathrm{d} *$ p elements

A third approach: Iterative deepening (IDDFS):

- Try DFS but don't allow recursion more than K levels deep.
- If that fails, increment K and start the entire search over
- Like BFS, finds shortest paths. Like DFS, less space.

Saving the path

- Our graph traversals can answer the "reachability question":
- "Is there a path from node x to node y ?"
- Q: But what if we want to output the actual path?
- Like getting driving directions rather than just knowing it's possible to get there!
- A: Like this:
- Instead of just "marking" a node, store the previous node along the path (when processing \mathbf{u} causes us to add \mathbf{v} to the search, set \mathbf{v}. path field to be \mathbf{u})
- When you reach the goal, follow path fields backwards to where you started (and then reverse the answer)
- If just wanted path length, could put the integer distance at each node instead

Example using BFS

What is a path from Seattle to Austin

- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique

Example using BFS

What is a path from Seattle to Austin

- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique

