
CSE 332: Data Structures & Parallelism

Lecture 10:Hashing

Ruth Anderson

Autumn 2019

Today

• Dictionaries

– Hashing

10/18/2019 2

Motivating Hash Tables

For dictionary with n key/value pairs

insert find delete

• Unsorted linked-list O(n) * O(n) O(n)

• Unsorted array O(n) * O(n) O(n)

• Sorted linked list O(n) O(n) O(n)

• Sorted array O(n) O(log n) O(n)

• Balanced tree O(log n) O(log n) O(log n)

* Assuming we must check to see if the key has already been inserted.

Cost becomes cost of a find operation, inserting itself is O(1).

10/18/2019 3

Hash Tables

• Aim for constant-time (i.e., O(1)) find, insert, and delete

– “On average” under some reasonable assumptions

• A hash table is an array of some fixed size

• Basic idea:

10/18/2019 4

0

…

TableSize –1

hash table

key space (e.g., integers, strings)

hash function:

h(key) index

Aside: Hash Tables vs. Balanced Trees

• In terms of a Dictionary ADT for just insert, find, delete, hash

tables and balanced trees are just different data structures

– Hash tables O(1) on average (assuming few collisions)

– Balanced trees O(log n) worst-case

• Constant-time is better, right?

– Yes, but you need “hashing to behave” (must avoid collisions)

– Yes, but what if we want to findMin, findMax, predecessor,

and successor, printSorted?

• Hashtables are not designed to efficiently implement these

operations

• Your textbook considers Hash tables to be a different ADT

• Not so important to argue over the definitions

10/18/2019 5

Hash Tables

• There are m possible keys (m typically large, even infinite)

• We expect our table to have only n items

• n is much less than m (often written n << m)

Many dictionaries have this property

– Compiler: All possible identifiers allowed by the language vs.

those used in some file of one program

– Database: All possible student names vs. students enrolled

– AI: All possible chess-board configurations vs. those

considered by the current player

– …

10/18/2019 6

Hash functions

An ideal hash function:

• Is fast to compute

• “Rarely” hashes two “used” keys to the same index

– Often impossible in theory; easy in practice

– Will handle collisions a bit later

10/18/2019 7

0

…

TableSize –1

hash table

key space (e.g., integers, strings)

hash function:

h(key) index

Who hashes what?

• Hash tables can be generic

– To store keys of type E, we just need to be able to:

1. Test equality: are you the E I’m looking for?

2. Hashable: convert any E to an int

• When hash tables are a reusable library, the division of

responsibility generally breaks down into two roles:

10/18/2019 8

• We will learn both roles, but most programmers “in the real world”

spend more time as clients while understanding the library

E int table-index
collision? collision

resolution

client hash table library

More on roles

10/18/2019 9

Two roles must both contribute to minimizing collisions (heuristically)

• Client should aim for different ints for expected items

– Avoid “wasting” any part of E or the 32 bits of the int

• Library should aim for putting “similar” ints in different indices

– conversion to index is almost always “mod table-size”

– using prime numbers for table-size is common

E int table-index
collision? collision

resolution

client hash table library

Some ambiguity in terminology on which parts are “hashing”

“hashing”? “hashing”?

What to hash?

• We will focus on two most common things to hash: ints and strings

• If you have objects with several fields, it is usually best to have

most of the “identifying fields” contribute to the hash to avoid

collisions

• Example:
class Person {

String first; String middle; String last;

Date birthdate;

}

• An inherent trade-off: hashing-time vs. collision-avoidance

– Use all the fields?

– Use only the birthdate?

– Admittedly, what-to-hash is often an unprincipled guess

10/18/2019 10

Hashing integers

key space = integers

Simple hash function:

h(key) = key % TableSize

• Client: f(x) = x

• Library g(x) = f(x) % TableSize

• Fairly fast and natural

Example:

• TableSize = 10

• Insert 7, 18, 41, 34, 10

• (As usual, ignoring corresponding data)

10/18/2019 11

0

1

2

3

4

5

6

7

8

9

Collision-avoidance

• With “x % TableSize” the number of collisions depends on

– the ints inserted (obviously)

– TableSize

• Larger table-size tends to help, but not always

– Example: 70, 24, 56, 43, 10

with TableSize = 10 and TableSize = 60

• Technique: Pick table size to be prime. Why?

– Real-life data tends to have a pattern

– “Multiples of 61” are probably less likely than “multiples of 60”

– We’ll see some collision strategies do better with prime size

10/18/2019 13

More arguments for a prime table size
If TableSize is 60 and…

– Lots of keys are multiples of 5, wasting 80% of table

– Lots of keys are multiples of 10, wasting 90% of table

– Lots of keys are multiples of 2, wasting 50% of table

If TableSize is 61…

– Collisions can still happen, but 5, 10, 15, 20, … will fill table

– Collisions can still happen but 10, 20, 30, 40, … will fill table

– Collisions can still happen but 2, 4, 6, 8, … will fill table

In general, if x and y are “co-prime” (means gcd(x,y)==1), then

(a * x) % y == (b * x) % y if and only if a % y == b % y

– Given table size y and keys as multiples of x, we’ll get a decent

distribution if x & y are co-prime

– So good to have a TableSize that has no common factors

with any “likely pattern” x
10/18/2019 14

What if the key is not an int?

• If keys aren’t ints, the client must convert to an int

– Trade-off: speed and distinct keys hashing to distinct ints

• Common and important example: Strings

– Key space K = s0s1s2…sm-1

• where si are chars: si [0,256]

– Some choices: Which avoid collisions best?

1. h(K) = s0

2. h(K) =

3. h(K) =

1

0

m

i

i

s

1

0

37
m

i

i

is

10/18/2019 15

Then on the library side we

typically mod by Tablesize

to find index into the table

Specializing hash functions

How might you hash differently if all your strings were web

addresses (URLs)?

10/18/2019 16

Aside: Combining hash functions

A few rules of thumb / tricks:

1. Use all 32 bits (careful, that includes negative numbers)

2. Use different overlapping bits for different parts of the hash

– This is why a factor of 37i works better than 256i

3. When smashing two hashes into one hash, use bitwise-xor

– bitwise-and produces too many 0 bits

– bitwise-or produces too many 1 bits

4. Rely on expertise of others; consult books and other resources

5. If keys are known ahead of time, choose a perfect hash

10/18/2019 17

Collision resolution

Collision:

When two keys map to the same location in the hash table

We try to avoid it, but number-of-possible-keys exceeds table size

So hash tables should support collision resolution

– Ideas?

10/18/2019 18

Flavors of Collision Resolution

Separate Chaining

Open Addressing

• Linear Probing

• Quadratic Probing

• Double Hashing

10/18/2019 19

Separate Chaining

Chaining: All keys that map to the same

table location are kept in a list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

10/18/2019 20

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 /

9 /

Separate Chaining

10/18/2019 21

0

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 /

9 /

10 / Chaining: All keys that map to the same

table location are kept in a list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

Separate Chaining

10/18/2019 22

0

1 /

2

3 /

4 /

5 /

6 /

7 /

8 /

9 /

10 /

22 /

Chaining: All keys that map to the same

table location are kept in a list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

Separate Chaining

10/18/2019 23

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

22 /

107 /

Chaining: All keys that map to the same

table location are kept in a list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

Separate Chaining

10/18/2019 24

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

12

107 /

22 /

Chaining: All keys that map to the same

table location are kept in a list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

Separate Chaining

10/18/2019 25

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

42

107 /

12 22 /

Chaining: All keys that map to the same

table location are kept in a list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example: insert 10, 22, 107, 12, 42 with
mod hashing and TableSize = 10

Worst case time for find?

Thoughts on separate chaining

26

• Worst-case time for find?

– Linear

– But only with really bad luck or bad hash function

– So not worth avoiding (e.g., with balanced trees at each bucket)

• Keep # of items in each bucket small

• Overhead of AVL tree, etc. not worth it for small n

• Beyond asymptotic complexity, some “data-structure engineering”
can improve constant factors

– Linked list vs. array or a hybrid of the two

– Move-to-front (part of Project 2)

– Leave room for 1 element (or 2?) in the table itself, to optimize
constant factors for the common case

• A time-space trade-off…

10/18/2019

Time vs. space
(only makes a difference in constant factors)

10/18/2019 27

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

42

107 /

12 22 /

0 10 /

1 / X

2 42

3 / X

4 / X

5 / X

6 / X

7 107 /

8 / X

9 / X

12 22 /

More rigorous separate chaining analysis

Definition: The load factor, , of a hash table is

10/18/2019 28

N

TableSize

 number of elements

Under chaining, the average number of elements per bucket is ___

So if some inserts are followed by random finds, then on average:

• Each unsuccessful find compares against ____ items

• Each successful find compares against _____ items

• How big should TableSize be??

Load Factor?

0

1 /

2

3 /

4 /

5 /

6

7 /

8 /

9 /

10 /

42

86 /

12 22 /

𝜆 =
𝑛

𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒
= ?

10/18/2019 30

Load Factor?

0

1

2

3

4 /

5

6

7

8

9

10 /

42

86 /

12 22 /

𝜆 =
𝑛

𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒
= ?

71 2 31 /

63 73 /

75 5 65 95 /

27 47

88 18 38 98 /

99 /

10/18/2019 32

Separate Chaining Deletion?

10/18/2019 34

Separate Chaining Deletion

35

• Not too bad

– Find in table

– Delete from bucket

• Say, delete 12

• Similar run-time as insert

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

42

107 /

12 22 /

10/18/2019

