
CSE 332: Data Structures & Parallelism

Lecture 3: Priority Queues

Ruth Anderson

Autumn 2019

Today

• Finish up Intro to Asymptotic Analysis

• New ADT! Priority Queues

9/30/2019 2

Scenario

What is the difference between waiting for service at a pharmacy

versus an ER?

Pharmacies usually follow the rule

First Come, First Served

Emergency Rooms assign priorities

based on each individual's need

9/30/2019 3

A new ADT: Priority Queue

• Textbook Chapter 6

– We will go back to binary search trees (ch4) and hash

tables (ch5) later

– Nice to see a new and surprising data structure first

• A priority queue holds compare-able data

– Unlike stacks and queues need to compare items

• Given x and y, is x less than, equal to, or greater than y

• What this means can depend on your data

• Much of course will require comparable data: e.g. sorting

– Integers are comparable, so will use them in examples

• But the priority queue ADT is much more general

• Typically two fields, the priority and the data

9/30/2019 5

Priority Queue ADT

• Assume each item has a “priority”

– The lesser item is the one with the greater priority

– So “priority 1” is more important than “priority 4”

– Just a convention, could also do a maximum priority

• Main Operations:

– insert

– deleteMin

• Key property: deleteMin returns and deletes from the queue

the item with greatest priority (lowest priority value)

– Can resolve ties arbitrarily

insert deleteMin

6 2

15 23

12 18

45 3 7

9/30/2019 6

Aside: We will use ints as data and priority

For simplicity in lecture, we’ll often suppose items are just ints

and the int is also the priority

• So an operation sequence could be

insert 6

insert 5

x = deleteMin // Now x = 5.

– int priorities are common, but really just need comparable

• Not having “other data” is very rare

– Example: print job has a priority and the file to print is the

data

9/30/2019 7

Priority Queue Example

insert a with priority 5

insert b with priority 3

insert c with priority 4

w = deleteMin

x = deleteMin

insert d with priority 2

insert e with priority 6

y = deleteMin

z = deleteMin

after execution:

To simplify our examples,

we will just use the priority

values from now on

Analogy: insert is like enqueue, deleteMin is like dequeue

But the whole point is to use priorities instead of FIFO

9/30/2019 8

Priority Queue Example

insert a with priority 5

insert b with priority 3

insert c with priority 4

w = deleteMin

x = deleteMin

insert d with priority 2

insert e with priority 6

y = deleteMin

z = deleteMin

after execution:

w = b

x = c

y = d

z = a

To simplify our examples,

we will just use the priority

values from now on

Analogy: insert is like enqueue, deleteMin is like dequeue

But the whole point is to use priorities instead of FIFO

9/30/2019 9

Applications

Like all good ADTs, the priority queue arises often

– Sometimes “directly”, sometimes less obvious

• Run multiple programs in the operating system

– “critical” before “interactive” before “compute-intensive”

– Maybe let users set priority level

• Treat hospital patients in order of severity (or triage)

• Select print jobs in order of decreasing length?

• Forward network packets in order of urgency

• Select most frequent symbols for data compression (cf. CSE143)

• Sort: insert all, then repeatedly deleteMin

9/30/2019 10

More applications

• “Greedy” algorithms

– Select the ‘best-looking’ choice at the moment

– Will see an example when we study graphs in a few weeks

• Discrete event simulation (system modeling, virtual worlds, …)

– Simulate how state changes when events fire

– Each event e happens at some time t and generates new

events e1, …, en at times t+t1, …, t+tn

– Naïve approach: advance “clock” by 1 unit at a time and

process any events that happen then

– Better:

• Pending events in a priority queue (priority = time happens)

• Repeatedly: deleteMin and then insert new events

• Effectively, “set clock ahead to next event”

9/30/2019 11

Preliminary Implementations of Priority Queue ADT

insert deleteMin

Unsorted Array

Unsorted Linked-List

Sorted Circular Array

Sorted Linked-List

Binary Search Tree

(BST)

Notes: Worst case, Assume arrays have enough space
9/30/2019 12

Aside: More on possibilities

• Note: If priorities are inserted in random order, binary search

tree will likely do better than O(n)

– O(log n) insert and O(log n) deleteMin on average

– Could get same performance from a balanced binary search

tree (e.g. AVL tree we will study later)

• One more idea: if priorities are 0, 1, …, k can use array of lists

– insert: add to front of list at arr[priority], O(1)

– deleteMin: remove from lowest non-empty list O(k)

9/30/2019 14

Our Data Structure: The Heap

The Heap:

• Worst case: O(log n) for insert

• Worst case: O(log n) for deleteMin

• If items arrive in random order, then the average-case of insert

is O(1)

• Very good constant factors

Key idea: Only pay for functionality needed

• We need something better than scanning unsorted items

• But we do not need to maintain a full sorted list

• We will visualize our heap as a tree, so we need to review some

tree terminology

9/30/2019 15

Q: Reviewing Some Tree Terminology
root(T):

leaves(T):

children(B):

parent(H):

siblings(E):

ancestors(F):

descendents(G):

subtree(G):

A

E

B

D F

C

G

IH

LJ MK N

Tree T

9/30/2019 16

Q: Some More Tree Terminology
depth(B):

height(G):

height(T):

degree(B):

branching factor(T):

A

E

B

D F

C

G

IH

LJ MK N

Tree T

9/30/2019 17

Types of Trees

Binary tree: Every node has ≤2 children

n-ary tree: Every node has ≤n children

Perfect tree: Every row is completely full

Complete tree: All rows except possibly the bottom are

completely full, and it is filled from left to

right

Perfect Tree Complete Tree

9/30/2019 20

Some Basic Tree Properties

Nodes in a perfect binary tree of height h?

Leaf nodes in a perfect binary tree of height h?

Height of a perfect binary tree with n nodes?

Height of a complete binary tree with n nodes?

9/30/2019 21

Properties of a Binary Min-Heap

More commonly known as a binary heap or simply a heap

– Structure Property:

A complete [binary] tree

– Heap Property:

Every non-root node has a priority value larger than

(or possibly equal to) the priority of its parent

How is this different from a binary search tree?

9/30/2019 23

Properties of a Binary Min-Heap

More commonly known as a binary heap or simply a heap

• Structure Property:

A complete [binary] tree

• Heap Order Property:

Every non-root node has a priority value larger than (or

possibly equal to) the priority of its parent

2513

8020

30

856040

8020

10

700 50

99

A Heap Not a Heap

9/30/2019 24

Properties of a Binary Min-Heap

• Where is the minimum priority item?

• What is the height of a heap with n items?

856040

8020

10

700 50

99

A Heap

9/30/2019 25

Heap Operations

• findMin:

• deleteMin: percolate down.

• insert(val): percolate up.

856040

8020

10

700 50

99

65

9/30/2019 27

Operations: basic idea

• findMin:

return root.data

• deleteMin:

1. answer = root.data

2. Move right-most node in last

row to root to restore

structure property

3. “Percolate down” to restore

heap order property

• insert:

1. Put new node in next position

on bottom row to restore

structure property

2. “Percolate up” to restore

heap order property

856040

8020

10

700 50

99

Overall strategy:

• Preserve complete tree

structure property

• This may break heap order

property

• Percolate to restore heap

order property

9/30/2019 28

DeleteMin Implementation

1. Delete value at root node (and store it for

later return)

2. There is now a "hole" at the root. We

must "fill" the hole with another value,

must have a tree with one less node,

and it must still be a complete tree

3. The "last" node is the is obvious choice,

but now the heap order property is

violated

4. We percolate down to fix the heap order:

While greater than either child

Swap with smaller child

34

9857

106911

34

9857

106911

10

9/30/2019 29

Percolate Down

Percolate down:

• Keep comparing with both children

• Move smaller child up and go down one level

• Done if both children are  item or reached a leaf node

• Why does this work? What is the run time?

34

9857

10

6911

4

9857

10

6911

3

84

91057

6911

3
?

?

9/30/2019 30

DeleteMin: Run Time Analysis

• Run time is O(height of heap)

• A heap is a complete binary tree

• Height of a complete binary tree of n nodes?

– height =  log2(n) 

• Run time of deleteMin is O(log n)

9/30/2019 31

Insert

• Add a value to the tree

• Structure and heap order properties

must still be correct afterwards

84

91057

6911

1

2

9/30/2019 32

Insert: Maintain the Structure Property

• There is only one valid tree shape after

we add one more node!

• So put our new data there and then

focus on restoring the heap order

property

84

91057

6911

1

2

9/30/2019 33

Maintain the heap order property

2

84

91057

6911

1

Percolate up:

• Put new data in new location

• If parent larger, swap with parent, and continue

• Done if parent  item or reached root

• Why does this work? What is the run time?

?

2
5

84

9107

6911

1

?

2

5

8

91047

6911

1?

9/30/2019 34

A Clever Trick for Storing the Heap…

Clearly, insert and deleteMin are worst-case O(log n)

• But we promised average-case O(1) insert (how??)

Insert requires access to the “next to use” position in the tree

• Walking the tree from root to leaf requires O(log n) steps

• Insert and Deletemin would have to update the “next to use”

reference each time: O(log n)

We should only pay for the functionality we need!!

• Why have we insisted the tree be complete? 

All complete trees of size n contain the same edges

• So why are we even representing the edges?

Here comes the really clever bit about implementing heaps!!!

9/30/2019 35

Array Representation of a Binary Heap

From node i:

• left child:

• right child:

• parent:

• We skip index 0 to make the math simpler

• Actually, it can be a good place to store the current size

of the heap

GED

CB

A

J KH I

F

L

7

1

2 3

4 5 6

98 10 11 12

A B C D E F G H I J K L

0 1 2 3 4 5 6 7 8 9 10 11 12 13

9/30/2019 36

Note: Exercises and P1 start counting from 0

