
CSE 332: Data Structures and Parallelism Autumn 2019

P3: Chess Checkpoint 1: Tue, Nov 19
Checkpoint 2: Tue, Nov 26
P3 Due Date: Wed, Dec 4

The purpose of this project is to compare sequential and parallel algorithms on some intractable
problems. You will also learn some new graph algorithms and a bit of combinatorial game theory.

Overview
In this project, you will write several chess bots and compete against other chess bots on the CSE 332
chess server. You will implement several (graph/tree) algorithms (both sequential and parallel) and be
able to see a significant difference in the quality of the bots. Unlike in previous projects, you should feel
free to use any and all Java data structures (since you’ve now implemented them all yourself).

Before attempting this project, you should read the handout on the algorithms! (games.pdf)

The project is designed so that you need minimal chess knowledge, but we recommend you familiarize
yourself with the basic rules just in case. We have written all of the chess-specific code (evaluator, move
generation, board, GUI, etc.); all you will be responsible for is implementing the game tree searching
algorithms. You may, of course, improve the board/evaluator/etc. to your liking.

The parts of this project alternate between sequential code and parallel code. For each new algorithm,
you will implement the sequential version first followed by a parallel version.

Project Restrictions
• You must work in a group of two unless you successfully petition to work by yourself.

• You may not edit any file in the cse332.* packages.

• The design and architecture of your code are a substantial part of your grade.

• The Write-Up is a substantial part of your grade; do not leave it to the last minute.

• DO NOT MIX any of your experiment or above and beyond files with the normal code. Before
changing your code for experiments or above and beyond, copy the relevant code into the corre-
sponding package (e.g., aboveandbeyond, experiments). If your code does not compile because
you did not follow these instructions, you will receive a 0 for all automated tests.

Provided Code
• cse332.*: You shouldn’t need to look at any of the files in this package. The code in these packages

sets up a GUI, a connection to the chess server, communicates with the chess server, and sets up
several interfaces. You shouldn’t need to understand any of this code to complete the project.

• chess.board: You also shouldn’t need to look at any of these files. In chess, the game position
consists of the board and some auxiliary information that these classes keep track of. We list below
the only relevant methods you need to be aware of that are from the ArrayBoard class:

List<Move> generateMoves()

Generates a list of valid moves that the current player could make.

1

https://courses.cs.washington.edu/courses/cse332/19au/handouts/games.pdf


void applyMove(Move move)

Applies the provided move to the board changing the state of the game.

void undoMove()

Undoes the last move applied to the board.

ArrayBoard copy()

Copies the board Object in its entirety. This operation is expensive; you should avoid using it
whenever possible.

• chess.game: This package contains classes related to playing a game of chess. It includes our
provided evaluator (which you may edit) and a timer class which might be useful if you want to
stop your bot after a certain amount of time. We list the methods you might need for these classes
below.

– SimpleEvaluator.java:

int infty()

Returns a number larger than any actual board evaluation to represent infinity.

int mate()

Returns the value of a board in checkmate. (Depending on the current player, this could
either be very high or very low.)

int stalemate()

Returns the value of a board in a stalemate (a draw).

int eval(Board board)

Returns a number representing “how good” the provided board is. Note that the Board
class maintains information about the current player (white or black), and eval will return
a value from the perspective of the current player.

– SimpleTimer.java: This class gives you a way to allow generateMove (the method that
finds the next best move) to be time limited. You do not have to use it, but if you do, feel free
to add/change methods to your liking.

• chess.setup:

– Engine.java: This class sets up the bot that will be used with the EasyChess client. You
can change any and all of the configuration parameters. In general, you will need to change
the class of the bot, the depth, and the sequential cutoff.

• chess.play: This package contains classes that allow you to connect to the CSE 332 Chess Server.

– EasyChess.java: This is the main client you will use to play chess using your bot on the chess
server. All of the setup uses the GUI. So, just run it as a “Java Application” in Eclipse, and
you’re good to go.

2



– CloudClient.java: This client is for running your bot in the cloud. It automatically starts
a game with the provided bot when it runs. To watch the game, log on using EasyChess on
your computer and use the “watch” command.

• chess.bots

– BestMove.java: This class will be useful when writing your bots, because you’ll need to return
both a move and its value. In substance, this is a lot like the DataCount object from p2.

– LazySearcher.java: This is a very dumb searching implementation that returns the first
move it finds. It’s intended to show you what a working bot looks like.

The CSE332 Chess Server
For this project, you will eventually need to compete with at least one of the bots. To do this, you will
connect to the CSE 332 Chess Server using the EasyChess client. We recommend playing games with
your bots on the server relatively frequently, because it is a fun and interesting way to debug your code.
Additionally, you can use the server to compete with other students’ bots.
Commands

Command Description

help Displays a help message with all of these commands listed.

match <name> Challenges name to a match. If name is one of our bots, the match will start immediately.
Otherwise, the server will wait for an accept command.

accept #<game> Accepts a challenge from another player. Once you accept, the game will start immedi-
ately.

watch #<game> Allows you to watch a game currently being played. To get a list of valid games, use the
games command.

who Lists all the players currently on the chess server.

games Lists all of the games currently being played

scores <bot> Lists the results of the last ten games with bot.

The Bots
Bot Name Description

calculon You should be able to beat this bot with your AlphaBetaSearcher.

clamps You should be able to beat this bot with a well-tuned JamboreeSearcher.

flexo This bot is more difficult to beat than clamps, and you will need to go above and beyond to
beat it.

bender This bot is substantially more difficult to beat than flexo, and you will need to go significantly
above and beyond to beat it.

Playing On The Server
• To have your bot play on the server, edit Engine.java to use the bot and parameters of your choice

and then run EasyChess or CloudClient.

• You will need to log in with your teamname and password you received in your original project
confirmation email from rea@cs referencing your gitlab repo. Your account may log in more than
once, but the server will start adding numbers (e.g., husky, husky1, etc.). Additionally, your account
may only play one game at a time.

• You need to update CloudClient for you to be able to run your bot on GCE.

3



• Your password is in an email you received after setting up the project (sent by rea@cs).

• For more on getting your GCE coupon check out the pinned post on Piazza called Link for GCE
Coupon

• Be sure to remember to turn off your instances if you are not using them!

• Note that in order to use 32 cores you will likely need to fill out a form as described in the Google
Compute Engine (GCE) Handout. While usually your request is granted fairly quickly, this can take
anywhere from a few hours to a full day.

• Be careful about the amount of memory you are selecting. One student accidentally selected "32
cores highmen CPU" (uses 208 GB memory), instead of "32 cores high CPU" (uses 28.8 GB memory).
Using highmen will charge you twice as much so you will run through your credits faster.

A Warning
All of the parts of this project involve understanding exactly how the previous parts worked. It would be
a giant mistake to split up the work by having one groupmate do half of the parts and the other one do
the rest.

Debugging Parallel Code
The most common question in all of P3 is "how do I even begin to debug parallel code?" Here are some
helpful tips that may help you out

• Check the debugging handout! There are a lot of common bugs listed under the P3 section.

• Experiment with very small/very large cutoffs. You can tweak the cutoffs to run parts of your code
entirely sequentially (e.g. divideCutoff = 1000 or percentageSequential = 1.00) or entirely in parallel.
This can help narrow down where the problem is, which makes it easier to find the problem (and
easier to ask for help at office hours).

• Break your code into several methods or RecursiveTasks. There is a LOT going on Jamboree, which
can lead to really subtle bugs if you’re not careful with how you structure your code. It tends to
be easier to keep everything straight if you break things down into methods or tasks based on their
logical function.

Part 1: Minimax and Parallel Minimax
In this phase, you will write two Searchers: SimpleSearcher and ParallelSearcher.
We strongly recommend that you look at LazySearcher before you begin to see what the structure of the
bot should look like. In particular, you should extend AbstractSearcher and use the instance variable
ply. If you want to use a timer, you should use the instance variable timer.
[NOTE: If you have not read the games handout yet, do so now! The algorithms described in the games
handout are only partial pseudocode, they are not complete algorithms. They are meant to get you started,
but you will need to think more deeply about the algorithms described there before implementing them
yourself.]

(1) SimpleSearcher: Implementing Minimax
SimpleSearcher should implement the Minimax algorithm as described in the games handout. This first
version should have no parallelism. While you may use a bestMove global variable that keeps track of the
“best move so far”, we recommend that you return a BestMove object from your minimax method instead.
The pseudocode in the games handout does not handle the case where there are no moves quite correctly.
You should handle it as follows:

4

https://courses.cs.washington.edu/courses/cse332/19au/handouts/gce.pdf
https://courses.cs.washington.edu/courses/cse332/19au/handouts/gce.pdf
https://courses.cs.washington.edu/courses/cse332/19au/handouts/debugging.pdf
https://courses.cs.washington.edu/courses/cse332/19au/handouts/games.pdf
https://courses.cs.washington.edu/courses/cse332/19au/handouts/games.pdf


1 if (moves.isEmpty()) {
2 if (board.inCheck()) {
3 return −evaluator.mate() − depth;
4 } else {
5 return −evaluator.stalemate();
6 }
7 }

In other words, if there are no moves, it’s either a stalemate or a mate. Mate is either very bad or very
good, but it depends slightly on how many moves away it is.
Additionally, you may notice a call to reportNewBestMove in LazySearcher; this method is responsible
for updating the “current best move” on screen, and, so, you may use it as (in)frequently as you like.

(2) ParallelSearcher: Implementing Parallel Minimax
ParallelSearcher should implement the parallel minimax algorithm as described in the games handout.
This version should be parallel. This version should be able to get further down the game tree than just
regular minimax. Make sure you do all the standard parallelism things: divide-and-conquer, sequential
cutoff, etc. Make sure you use the cutoff instance variable defined in AbstractSearcher rather than
creating your own (for the sequential cutoff); the reason is later, when you want to configure all the
variables, there is a setCutoff method you can use to quickly edit the cutoff.
Note that you are doing parallelism on a graph here. In particular, you absolutely should not treat the
children as a linked list by forking each thread in a loop, because that wouldn’t be divide-and-conquer.
Imagine that you have a SearchTask class that extends RecursiveTask<BestMove<M>>, your recursive
calls should look like the following:

split list split list

make move make move

split list split list

make move make move

split list split list

split list split list

make move make move

split list

make move

split list split list

split list split list

Board 0: ◦ ◦ ◦ ◦ ◦ ◦ ◦
m[0] m[1] m[2] m[3] m[4] m[5] m[6]

Board 0: ◦ ◦ ◦ ◦
m[0] m[1] m[2] m[3]

Board 0: ◦ ◦
m[0] m[1]

Board 1
New Moves

...

Board 2
New Moves

...

Board 0: ◦ ◦
m[2] m[3]

Board 3
New Moves

...

Board 4
New Moves

...

Board 0: ◦ ◦ ◦
m[4] m[5] m[6]

Board 0: ◦ ◦
m[4] m[5]

Board 5
New Moves

...

Board 6
New Move

...

Board 0: ◦
m[6]

Board 7
New Moves

...

Once your divide-and-conquer tree gets to a certain depth with respect to cutoff, you should switch to a
sequential algorithm. (Namely, minimax.) Furthermore, as above, you will be doing a divide-and-conquer
algorithm; so, there will be a second cutoff, divideCutoff, which will tell the algorithm when to stop
dividing nodes.
This bears repeating: your code will have TWO cutoffs in it:

• cutoff tells the algorithm when the number of plies remaining is small enough that the rest should
be executed sequentially (Use the existing super class field for this.)

• divideCutoff tells the algorithm when to stop forking children via divide-and-conquer and instead
fork them sequentially (Note: This does NOT mean to execute them sequentially.) (Make your own
constant for this.)

Note that creating an instance of a class (e.g., SimpleSearcher) to run your sequential algorithm would
work, but it would be prohibitively slow. Instead, note that your minimax method in SimpleSearcher is
static; so, you can call it without instantiating a new instance every recursive call.

5



Part 2: Alpha-Beta and Jamboree
In this phase, you will write two substantially more interesting Searchers: AlphaBetaSearcher and
JamboreeSearcher. These Searchers should extend AbstractSearcher and use the ply and cutoff
variables like in the previous part. Debugging these implementations will be substantially more time
consuming than the previous ones.

(3) AlphaBetaSearcher: Implementing Alpha-Beta Pruning
When starting to implement this Searcher, it will help to copy over your SimpleSearcher code and edit
it directly. The hardest part of this particular implementation is understanding exactly how the algorithm
works. We recommend you look very carefully at the diagrams in the games handout. Feel free to look
up other explanations of the algorithm on the internet or in Weiss 10.5.2 (p. 495). This video is really
helpful when learning alpha-beta for the first time.

(4) JamboreeSearcher: Implementing Parallel Alpha-Beta Pruning
This searcher combines ideas from all the previous ones. It is parallel in a similar way to ParallelSearcher,
but it uses Alpha-Beta Pruning as a base, sequential algorithm. You should probably start by copying in
the alphabeta code from the previous implementation.
For better or worse, combining the “complicated algorithm” with the “complicated parallelism” leads to a
host of new concerns/issues. We list things you will almost certainly run into here for your convenience:

• As with ParallelSearcher, you will need to use divide-and-conquer which means looping through
the nodes when you are supposed to be parallelizing is not acceptable.

• In the sequential algorithms, you never had to copy the board, because only one thread needed it.
In ParallelSearcher, you always needed to copy the board, because every thread needed one.
Here, you get a weird in-between. You will often need to copy the board, but you should always do
it in the child, rather than the parent. The reasoning is that if you copy in a parent thread, all of its
children are waiting on the copy, but if you do it in the child, all the children can get started earlier.
Note that you should avoid copying as much as possible, because it is the most expensive piece of
the algorithm.

• All your recursive calls should be to jamboree–not minimax, not parallelMinimax–in particular,
it’s tempting to make the “parallel part of the recursion” be a call to your ParallelSearcher and the
“sequential part” a call to your minimax. This will lead to significantly worse performance and is
not the jamboree algorithm.

• A good implementation of this algorithm will get to depth 6.

The games handout says "Evaluate x of the moves sequentially to get reasonable alpha/beta values" in
the % sequential portion. This does not mean you should be calling AlphaBeta in % sequential. "Evaluate
sequentially" means "try the first % sequential moves, one after the other, updating alpha after each one",
as contrasted with "try all of the moves at the same time, with the same alpha value", which is what you
do for the remaining moves.
Minimax, ParallelMinimax, AlphaBeta, and Jamboree all return the same answer (modulo tie-breaking),
so whenever we want to solve the "evaluate a board using a search to a given depth" problem, we should
just use whichever one of those is fastest. This fastest searcher is almost always Jamboree, but when we’re
below the depth cutoff inside our Jamboree, there are already a lot of threads buzzing around (and there
isn’t that much stuff to search in the remaining levels), so AlphaBeta is actually the faster choice in that
specific situation, which is why we have the depth cutoff to begin with.
Your % sequential portion should only be hit above the depth cutoff, so you should only be constructing
Jamboree tasks in the % sequential. Even if the newly created tasks end up being at the depth cutoff,
they’ll just hand off work to AlphaBeta immediately.

6

https://www.youtube.com/watch?v=xBXHtz4Gbdo


You can verify experimentally that this is the correct approach by testing both of them (it’s just a one-line
change). On my machine, calling alphaBeta from % sequential consistently takes around 10s for depth4,
vs 5s for depth4 if I compute Jamboree tasks instead. Similarly, you can also check what happens if you
ignore the sequential depth cutoff and continue calling Jamboree down to depth 0 (it causes a similar
slowdown).

Part 3: Using Your Algorithms
In this part, you will attempt to beat at least one bot on the CSE 332 Chess Server and apply your code to
a completely different problem. Please refer to Playing On The Server above. In particular, remember
that you need to edit Engine.java.

(5) Beating Clamps
We have designed clamps so that you should be able to beat him with the code you’ve written for this
project. Ten percent of your grade on this project will be based on beating (or drawing)against clamps
a sufficient number of times. We will take the very last ten games you play, count a loss as 0, a draw as
0.5, and a win as 1; your score on this part of the project will be the sum of these scores (capped at a
max of 8.0) divided by eight. Notice that if you play 30 games against clamps, only the last ten
you run will count. (Note: even though we will sum your wins and draws from the last ten games you
played, it will not be possible to score above 8.0/8.0 .)
If you are having problems beating clamps, we recommend first checking your code using the gitlab-ci
tests. If it’s working, then try to make the ply parameter higher. If you time out before you start winning,
try running your bot in the cloud using a 32 core machine (see below for instructions). You may wish
to take a look at the Write-Up at this point, in particular, the section on “Optimizing Experiments”. As
tweaking various parameters may help you beat clamps.
Depending on your implementation of JamboreeSearcher, it might not be good enough to consistently
beat clamps; in the event that this happens, you should make a new class and implement any of the
following:

• Use “Iterative Deepening”. Alpha-beta is effectively a suped-up DFS over the game graph. Because
move ordering is important (as discussed below), it is often worth it to first try 1-ply, then start
over and try 2-ply, etc. Keep in mind that the bulk of the graph is always at the later plys; so, this
strategy doesn’t redo a ton of work. Furthermore, you can use your “current guess” from the lower
plys to maybe avoid large chunks of the later ones.

• Use “Move Ordering”. Alpha-beta and Jamboree are very sensitive to the order that you actually
look at the moves in. There are several heuristics (heuristics, because they don’t always work) that
often result in better ordering. Key words to look up include: “killer move heuristic”, “MVV-LVA”,
“History Heuristic” and others: https://www.chessprogramming.org/Move_Ordering

• Use a “Transposition Table”. As you explore the chess graph, you will run into the same positions
many times. We solved this problem in DFS by keeping track of the nodes we’d already seen. A
“transposition table” is a fancy data structure for games that does exactly this. The idea is that
the number of nodes you are visiting is very large; so, instead of keeping track of everything, we
keep track of the most recent nodes we’ve seen in a hash table. Note that we have implemented
something called “Zobrist Hashing” for you to make this easier. Using this idea results in a significant
speed-up. For more detail on transposition tables, check the internet.

The bot you use to beat Clamps MUST be a derivative of Jamboree–you must use parallelism
here!

Using Tokens and playing bots
You are welcome to keep playing the bots until 11:59pm on Fri, Dec 6 even without using a token. If you
would like to update your writeup or your code in the repo then you will need to use a token. We will use

7



whatever your score on the server is at 11:59pm Fri, Dec 6 both for beating clamps and any above and
beyond.

Part 4: Write-Up
(6) Write Up
A large portion of your grade will be based on your write-up. You will find the write-up questions here in
the P3 Write-up Template. Remember to follow the instruction on the first and second page to receive
full credit! The Chess Game experiments and algorithm optimization part of this project are incredibly
important, and we expect you to spend an entire weeks worth of work on it. Some of the write-up questions
will ask you to design and run some experiments to compare different implementations for the Chess Game.
Answering these questions will require slightly editing your algorithm to record the number of nodes you
visited and producing result tables and graphs, together with relatively long answers. Do not wait until
the last minute! Then, you will learn to optimize your algorithms based on sequential cutoffs and number
of processors as well as compare the actual run times of your four implementations after you have found
the optimal settings.
Insert tables and graphs into your write-up as appropriate, and be sure to give each one a title and label
the axes for the charts.
IMPORTANT: Place all your optimizing experiments code into the package experiment. Be careful not
to leave any write-up related code in the normal files. To prevent losing points due to the modifications
made for the write-up experiments, you should copy all files that need to be modified for the experiments
into the package experiment, and start working from there. Files in different packages can have the
same name, but when editing be sure to check if you are using the correct file! If your code does not
compile because you did not follow these instructions, you will receive a 0 for all automated tests. For
all experimental results, we would like to see a detailed interpretation, especially when the results do not
match your expectations.

For instructions on how to use Google Compute Engine, read this handout

Project Checkpoints
This project will have two checkpoints (and a final due date). A checkpoint is a check-in on a certain
date to make sure you are making reasonable progress on the project. For each checkpoint, you (and your
partner) will sign up for a 10-minute time slot during which you will meet with a staff member and discuss
where you are on the project.

As long as you show up to a time-slot and you do not miss multiple checkpoints in a row, the checkpoint
will not affect your grade in any way.

Checkpoint 1: (1), (2) Tue, Nov 19
Checkpoint 2: (3), (4) Tue, Nov 26
P3 Due Date: (5), (6) Wed, Dec 4

Above and Beyond
For this project, beating flexo and bender will involve a substantial amount of work improving your bot.
If you manage to beat flexo 5 times out of your last 10 games, that would be substantial. If you manage
to beat bender, 2 times out of your last 10 games, that would be significantly substantial. Anything that
goes toward these goals counts as Above and Beyond! Have fun!

8

https://docs.google.com/document/d/1XYY6g688RDAgrwghZRzq-2_aGSon_jXnp4E8Z9p187E/edit?usp=sharing
https://courses.cs.washington.edu/courses/cse332/19au/handouts/gce.pdf

	SimpleSearcher: Implementing Minimax
	ParallelSearcher: Implementing Parallel Minimax
	AlphaBetaSearcher: Implementing Alpha-Beta Pruning
	JamboreeSearcher: Implementing Parallel Alpha-Beta Pruning
	Beating Clamps
	Write Up

