
CSE 332: Data Structures and Parallelism Autumn 2019
P2: uMessage Checkpoint 1: Due Tue, October 22

Checkpoint 2: Due Tue, October 29
P2 Due Date: Due Tue, November 5

The purpose of this project is to implement various data structures and algorithms described in
class. You will also implement the back-end for a chat application called “uMessage”.

Overview
One of the most important ADTs is the Dictionary and one of the most studied problems is sorting.
In this assignment, you will write multiple implementations (AVLTree, HashTable, etc.) of Dictionary
and multiple sorting algorithms.

All of these implementations will be used to drive word suggestion, spelling correction, and autocompletion
in a chat application called uMessage. These algorithms are very similar to the ones smartphones use
for these problems, and you will see that they do relatively well with a small effort. Since uMessage has
many components and is difficult to test, we will ask you to test your code by writing another client for
WordSuggestor.

We have provided the boring pieces of these programs (e.g., GUIs, printing code, etc.), but you will write
the data structures that back all of the code we’ve written.

Project Restrictions
• You must work in a group of two unless you successfully petition to work by yourself.

• You may not use any of the built-in Java data structures. One of the main learning outcomes is to
write everything yourself.

• You may use the math package.

• You may not edit any file in the cse332.* packages.

• The design and architecture of your code are a substantial part of your grade.

• The Write-Up is a substantial part of your grade; do not leave it to the last minute.

• DO NOT MIX any of your experiment or above and beyond files with the normal code. Before
changing your code for experiments or above and beyond, copy the relevant files into the corre-
sponding package (e.g., aboveandbeyond, experiments). If your code does not compile because
you did not follow these instructions, you will receive a 0 for all automated tests.

• Make sure to not duplicate fields that are in super-classes (e.g., size). This will lead to unexpected
behavior and failures of tests.

NGrams and Generating Text
An NGram is a list of n words appearing in order in a text. They are often used in textual analysis to see
how frequent patterns are. In this assignment, you will use them to generate new text that sounds like
the author of an original text. This type of text generation is how word prediction works on your phone.

There are two main backend programs that drive uMessage: WordSuggestor and SpellingCorrector.
We recommend you only attempt to run uMessage directly when you believe you no longer have any
bugs.

1



P1 and Beyond
This project actually extends on p1 a lot! You will need to port over (i.e., put them in the same packages)
the following:

• datastructures.worklists: All your simple WorkLists: ArrayStack, ListFIFOQueue,
CircularArrayFIFOQueue

• datastructures.worklists: Your MinFourHeap (Note that it will not immediately compile,
because the interfaces have changed slightly–more on that later.)

• datastructures.dictionaries: Your HashTrieSet and your HashTrieMap

Be sure you do NOT place these in cse332.datastructures.worklists. After you port these files over,
CircularArrayFIFOQueue won’t compile. It defines a type parameter E in CircularArrayFIFOQueue<E>
at the top of the class, but you should replace this E with “E extends Comparable<E>”.

Provided Code
Several of the interfaces and implementations from p1 also appear in p2. We will only describe the new
classes in an attempt to be less overwhelming.

• cse332.interfaces.misc
– DeletelessDictionary.java: Like a dictionary, but the delete method is unsupported.
– ComparableDictionary.java: A DeletelessDictionary that requires comparable keys.
– SimpleIterator.java: A simplification of Java’s Iterator that has no remove method.

• cse332.datastructures.*
– Item.java: A simple container for a key and a value. This is intended to be used as the

object stored in your dictionaries.
– BinarySearchTree.java: An implementation of Dictionary using a binary search tree. It

is provided as an example of how to use function objects and iterators. The iterators you write
will not be as difficult.

• cse332.*
– WordReader.java: Standardizes inputs into lower case without punctuation.
– LargeValueFirstItemComparator.java: A comparator that considers larger values as “smaller”,

and breaks ties by considering the keys.
– InsertionSort.java: A provided implementation of InsertionSort.
– AlphabeticString.java: This type is a BString that is just a wrapper for a standard

String.
– NGram.java: This type is a BString that represents an n-gram.

• p2.wordcorrector
– AutocompleteTrie.java: This is the trie used by uMessage; it is backed by HashTrieMap.
– SpellingCorrector.java: This is the spelling corrector used by uMessage.

• p2.wordsuggestor
– ParseFBMessages.java: This program downloads your facebook messages. It is intended to

be used as a way of generating a personal corpus for the WordSuggestor. There are more
instructions for using this in the writeup spec

– WordSuggestor.java: This is the word suggestor used by uMessage.
• p2.clients

– NGramTester.java: This class can be used to test your NGramToNextChoicesMap.
• chat

– uMessage.java: This is the main driver program for uMessage.

You will implement NGramToNextChoicesMap (in p2.wordsuggestor), MoveToFrontList, AVLTree,
and ChainingHashTable (in datastructures.dictionaries), HeapSort, QuickSort, and TopKSort
(in p2.sorts).

2



uMessage
After you have finished all the implementations, you will be ready to try out uMessage. We expect you to
actually play with the application, and the Write-Up will ask you to do several things with it. Importantly,
there are configuration settings (n and the corpus) at the top of uMessage.java which you will want to
edit.

Project Checkpoints
This project will have two checkpoints (and a final due date). A checkpoint is a check-in on a certain
date to make sure you are making reasonable progress on the project. For each checkpoint, you (and
your partner) will sign up for a 10-minute time slot during which you will meet with a staff member and
discuss where you are on the project.

As long as you show up to a time-slot and you do not miss multiple checkpoints in a row, the
checkpoint will not affect your grade in any way.

Checkpoint 1: (1), (2) Tue, October 22
Checkpoint 2: (3), (4), (5), (6) Tue, October 29
P2 Due Date: (7), (8) Tue, November 5

Part 0: Installing JavaFx
P2 uses JavaFx later to run uMessage, but in order to build and compile your project, you must have it
installed beforehand. Before writing code or running tests, you should install JavaFx uses the following
instructions.
If you are using Java 11 or later, you must install JavaFX

(1) Download Java FX
(2) In the main menu, go to File | Project Structure

(3) Go to Project Settings | Libraries

(4) Click on the + button
(5) Locate ..\javafx-sdk-11.0.1\lib folder from extracted zip of openJFX 11
(6) Apply settings and click Ok

Part 1: A Dictionary Client & A new Dictionary
Perhaps confusingly, you will begin by writing the client data structure that will use all of your code. This
data structure is called NGramToNextChoicesMap. We have written part of it for you, but we’re asking
you to implement most of this data structure so you become familiar with the expected behavior of the
data structures you will be writing later.

One skill that you will need to pick up over your career is learning new APIs; to help you with this, we
have (without significant explanation) used a few Java 8 features. In particular, you will want to look up
the Supplier class. Although it is overkill, parts of this tutorial are helpful.

(1) NGramToNextChoicesMap
Before continuing, it is imperative that you understand what an NGram is.
The very general idea of NGramToNextChoicesMap is the following:

NGramToNextChoicesMap will map NGrams to words to counts.

3

https://gluonhq.com/products/javafx/
https://www.geeksforgeeks.org/supplier-interface-in-java-with-examples/
http://winterbe.com/posts/2014/03/16/java-8-tutorial/


Let’s walk through an example to better understand this. Suppose that the n in n-gram is 2 and the
following are the contents of our input file:

>> Not in a box.
>> Not with a fox.
>> Not in a house.
>> Not with a mouse.

The key set of the outer map will contain all of the 2-grams in the file. That is, it will be

{“box SOL”, “house SOL”, “in a”, “a fox”, “a house”, “with a”, “not with”, “fox SOL”, “a box”, “not in”, “SOL
not”}

Notice several interesting things about the output: (1) all input is standardized by removing non-
alphanumeric characters converting everything to lower case, and (2) the “word” “SOL” has been added
at the beginning of every line except the first one. “SOL”, which stands for “start of line”, is inserted by
uMessage so that individual pieces of the corpus do not get mushed together. Furthermore, note that “a
mouse” does not appear in the outer map; the reason for this is that there is nothing after it to include!

The “top level” maps to another dictionary whose keys are the possible words following that n-gram. So,
for example, the keys of the dictionary that “with a” maps to are {“mouse”, “fox”}, because “mouse”
and “fox” are the only two words that follow the 2-gram “with a” in the original text.

Finally, the values of the inner dictionary are a count of how many times that word followed that n-gram.
So for example, we have:

• "not in"={a=2}, because the word “a” follows the 2-gram “not in” twice
• "with a"={mouse=1, fox=1}, because “mouse” and “fox” each only appear once after “with a”

The entire output for the sample input file above looks like:
"SOL not"={in=1, with=2}, "a box"={SOL=1}, "a fox"={SOL=1}, "a house"={SOL=1},
"box SOL"={not=1}, "fox SOL"={not=1}, "house SOL"={not=1}, "in a"={box=1, house=1},
"not in"={a=2}, "not with"={a=2}, "with a"={fox=1, mouse=1}

The order of the entries does not matter (remember, dictionaries are not ordered), but the contents do.
Part of this project is comparing and contrasting the performance of various implementations of Dictionary.
To do this, we will use different “outer” and “inner” Dictionary types in NGramToNextChoicesMap.
(The outer type is the map from NGrams to words; the inner type is the map from words to counts.) To
make this easier, NGramToNextChoicesMap takes two “initializers” in its constructor representing these
types. For example, to use outer = ChainingHashTable and inner = MoveToFrontList, we would
write:

new NGramToNextChoicesMap(() -> new ChainingHashTable(), () -> new MoveToFrontList())

The “() -> X” notation tells Java to make a function that takes no arguments and returns the thing
on the right. This is handy, because our NGramToNextChoicesMap needs to be able to create new inner
maps for each key in the outer map.

One more important implementation detail is that instead of using type “String” for the words, we use
type “AlphabeticString”. The reason for this should be clear: we’d like to use TrieMap if possible!

To use a HashTrieMap, we need to jump through a few extra hoops, because the constructor takes an
extra argument. We’ve provided a method for you in NGramTester called trieConstructor which does
this for you; it returns a Supplier which can be given directly to WordSuggestor.
Now that you know what NGramToNextChoicesMap is supposed to do, implement the following two
methods:

4



public void seenWordAfterNGram(NGram ngram, String word)

Increments the number of times that word has been seen after ngram

public Item<String, Integer>[] getCountsAfter(NGram ngram)

Returns an array of Items representing words and the number of times each word was seen after
ngram. There is no guarantee on the ordering of the array.

There is a third method relevant to word suggestion called getWordsAfter which we have partially
implemented for you, but, for now, you should not implement it.

We recommend testing your implementation by using HashTrieMap since you already have one that
works.

(2) MoveToFrontList: Another Dictionary
In this part, you will implement MoveToFrontList, a new type of Dictionary.

For the remainder of the Dictionary classes you will implement, we will not ask you to write delete–it
is possible (and you can do it for extra credit), but it’s not educational enough to be part of the actual
project. As a result, your Dictionary classes will inherit from DeletelessDictionary which is the
same as Dictionary except it does not require that you implement a delete method.

MoveToFrontList is a type of linked list where new items are inserted at the front of the list, and an
existing item gets moved to the front whenever it is referenced. Although it has O(n) worst-case time
operations, it has a very good amortized analysis. We will not discuss this data structure in class.

MoveToFrontList relies on equality testing of elements. In Java, we deal with this by defining an equals
method. If you look in BString (the class that AlphabeticString and NGram both inherit from), it
relies on CircularArrayFIFOQueue having a reasonable definition of equality. Before MoveToFrontList
will work, you will need to define the equals method for CircularArrayFIFOQueue. You may not use
toString to implement equals; we expect you to build it from scratch. You might be wondering how
to figure out the type of the parameter for equals; in Java, the equals method takes an Object. You
will want to to do research on the Java instanceof operator, as it will be a part of your solution.
In addition to equality testing, we also need to be able to compare two Objects. To do this, you
should complete the compareTo method in CircularArrayFIFOQueue. You may not use toString to
implement compareTo; we expect you to build it from scratch.
The reason we implement this is that our tree dictionaries in the next part will need to be able to do
comparisons instead of equality testing.

Remember, in any Dictionary implementation, you may use any of your WorkList implementations.

Part 2: Implementing The Remaining Dictionary Classes and Sorts
(3) AVLTree: Another Another Dictionary
In this part, you will implement AVLTree. We recommend waiting to do this until we have discussed it
in lecture. Just like before, you do not have to implement delete. Your AVLTree should be a sub-class
of BinarySearchTree which we have written for you. Be careful to not duplicate code in rotation. You
should use an array implementation of left and right children as in BinarySearchTree. Your insert(K
key, V value) should run in O(log(n)). If your rotation code is repetitive or does not run in O(log(n)),
you will lose a substantial amount of points.

A note on AVLTree Inheritance. AVLTree extends BinarySearchTree, and BinarySearchTree has a
couple methods we might think could be useful: find(K key, V value) and find(K key). Some of
you may be trying to use the former (find(K key, V value)) to access the appropriate spot in your tree

5



without duplicating code, but there’s actually an issue with this: find(K key, V value) puts BSTNodes
in your AVLTree and returns them to you. These nodes can’t be cast to AVLNode (because they were
initialized as BSTNodes), and, since they are BSTNodes, they don’t have that all-important height field,
so you can’t use them.

In other words, you should not call the find(key, value) method (with a non-null second argument)
in BinarySearchTree as part of your insert method. It’s okay if you end up duplicating some of the
find(K key, V value) logic in your insert() method.

You will not need to write a separate find(key) method, though, since the behavior of that method will
be the same for both tree types, meaning that the inherited method already behaves correctly.

Recall that all BSTs rely on a reasonable definition of comparison. Our BST and your AVLTree will both
rely on the compareTo that you wrote in the previous part.

A note on debugging. You can "fail fast" by adding your verify-avl code as a private helper method,
checking validity after every modification to the tree, and throwing an exception if the check fails. This
will help you identify which sections of the code are breaking the tree. These checks will be expensive
and should be disabled in the final version, but can be helpful when debugging.

(4) ChainingHashTable: Another Another Another Dictionary
In this part, you will implement ChainingHashTable. We recommend waiting to do this until we have
discussed it in lecture. Just like before, you do not have to implement delete. Your hash table must use
separate chaining–not probing. Furthermore, you must make the type of chain generic. In particular, you
should be able to use any dictionary implementation as the type inside the buckets. Your HashTable
should rehash as appropriate (use an appropriate load factor as discussed in the class), and its capacity
should always be a prime number. Your HashTable should be able to work with uMessage which means
there shouldn’t be a hard cap on how much it can grow; though, it doesn’t have to use primes past
200,000.
Pick a reasonable starting size for your HashTable. You should use a hardcoded list of primes to resize
up to 200,000. Do not hard code every prime up to 200,000 - just pick a reasonable range of prime
numbers. After this point, you should continue to resize your table using some other mechanism. Note
that you MUST GROW the table past 200,000. It’s ok if you just double the size of your table when you
re-hash!

Recall that all Hash Tables rely on a reasonable definition of hash code. Just like you needed to
define equals and compareTo for various other data structures, you will need to define hashCode
in CircularArrayFIFOQueue for ChainingHashTable. You may not use toString to implement
hashCode; we expect you to build it from scratch.

At some point, you will want to test various types of chains in your ChainingHashTable. It is confusing
to do this initially; so, we have provided some examples in the NGramTester class.

(5) HashTrieMap: Full Circle!
Now that you have written your own hash map, replace the dependency on Java’s HashMap with your
ChainingHashTable! This is not only okay, it’s a great example of unexpected refactoring. Refactoring
will usually set off a chain reaction where you also have to edit other code.
You will want to look at the SimpleEntry javadoc. Remember that you may edit any class that is not in
a cse332.* package.

Here is a general guide on what to change:

• You will need to fix AutocompleteTrie.java as part of your refactor

6

https://docs.oracle.com/javase/8/docs/api/java/util/AbstractMap.SimpleEntry.html


• Some methods might become impossible to implement with ChainingHashTable. In this case, it
is okay to throw a UnsupportedOperationException.

• You will notice a mismatch between the type of iterator returned from ChainingHashTable and
the one that you need in HashTrieNode. This is an example of a common issue you run into while
refactoring code.

(a) You’ll need to add a (small) bit of code to HashTrieNode/HashTrieMap to work around this
type mismatch. You can do it using what you’ve already learned about Iterators.

(b) Note that you shouldn’t modify the ChainingHashTable.iterator() return type, because
then it wouldn’t match the Dictionary interface, and you also shouldn’t add superfluous iterator
methods to ChainingHashTable to solve a problem in HashTrieMap.

You have now written pretty much all of the data structures that you’ve used from Java’s library! You
now understand all the magic under the hood! Take a minute to bask in the glory that is data structures
nirvana.

(6) MinFourHeap (Again?) and The Sorts
The MinFourHeap you wrote in p1 was only able to compare elements in a single way (based on the
compareTo). There is a more general idea called a Comparator which allows the user to specify a
comparison function. The first thing you should do in this part is edit your MinFourHeap to use a
comparator. You should edit the constructor to take a Comparator<E> and the rest of your code to use
that comparator in place of compareTo. This is necessary to make the sorts (below) work.
After you’ve edited MinFourHeap, you will be ready to write the following sorting algorithms:

• HeapSort: Consists of two steps:
(1) Insert each element to be sorted into a heap (MinFourHeap)
(2) Remove each element from the heap, storing them in order in the original array.

• QuickSort: Implement quicksort. As with the other sorts, your code should be generic. Your
sorting algorithm should meet its expected runtime bound.

• TopKSort: An easy way to implement this would be to sort the input as usual and then just
print k largest of them. This approach finds the k largest items in time O(n lg n). However, your
implementation should have O(n lg k) runtime, assuming k is less than or equal to n. Efficiently
tracking the k largest will require a different comparator than what you used in HeapSort. TopKSort
should put the top k elements in the first k spots in the array, and all the other indices should
be null. In other words, if A = quicksort(B) for some array B, then: topKSort(k,A) =
[A[n− k], A[n− (k − 1)], . . . , A[n− 1], null, null, . . . , null].
Notice that inside NGramToNextChoicesMap, when you use TopKSort you will have to use a
different comparator than you used in HeapSort and you will need to modify the result returned
from the sort.
(Hint: Use a heap, but never put more than k elements into it. Think about why this gives
O(n lg k) runtime bound).

Part 3: The Write-Up
(7) Write-Up
Approximately half of your grade will be based on your write-up. The analysis part of this project is
incredibly important, and we expect you to spend an entire week’s worth of work on it. You will find the

7



write-up questions here in the P2 Write-up Template. Remember to follow the instruction on the first
and second page to receive full credit!

Some of the write-up questions will ask you to design and run some experiments to determine which
implementations are faster for various inputs. Answering these questions will require writing additional
code to run the experiments, collecting operation counting or timing information and producing result
tables and graphs, together with relatively long answers. Do not wait until the last minute! We will post
more information about the difference between operation counting or timing.

Insert tables and graphs into your write-up as appropriate, and be sure to give each one a title and label
the axes for the graphs. IMPORTANT: Place all your operation counting or timing code into the
package experiment. Be careful not to leave any write-up related code in the normal files. To prevent
losing points due to the modifications made for the write-up experiments, you should copy all files that
need to be modified for the experiments into the package experiment, and start working from there.
Files in different packages can have the same name, but when editing be sure to check if you are using
the correct file! If your code does not compile because you did not follow these instructions, you will
receive a 0 for all automated tests.

You will need to write a second hashing function. To exaggerate the difference between the two hash
functions, you will want to compare a very simple hash function with a decent one (the one used in Part
2). For all experimental results, we would like to see a detailed interpretation, especially when the results
do not match your expectations.

(8) uMessage - Do not wait until the last minute for this!
Now that you are done with all of the coding (and most of the write-up) for the project, you are ready to
attempt to run uMessage. As many folks saw when they ran zip on P1, this may expose problems with
code you wrote earlier. Do not wait until the last minute for this step!

Note: When using uMessage, our course policy requires that you use your CSE or UWNetID as your
username. Using the system with a pseudonym or anything other than your netID is grounds for failing
the assignment. This is a fun program to play around with (please do!) but anyone found using the
system to annoy or harass others will be referred to the appropriate university authorities.

Before you run uMessage, you will want to do the following:

• Increase the allowed heap size in IntelliJ. In particular, uMessage runs significantly more smoothly
if you give it 6GBs of memory.

(1) On the Help menu, click Edit Custom VM Options.
(2) Set the -Xmx option to 3G without the quotation marks, so the final line should be -Xmx3G

(3) Restart IntelliJ

• Make sure your computer is plugged in. (Yes, this will make a difference.)

• Finish the getWordsAfter method in NGramToNextChoicesMap. You should replace InsertionSort
with a faster, standard sort, and if k ≥ 0, you should run TopKSort. You might have to do some-
thing more than just run TopKSort to get the most frequent words out. Figuring out exactly what
to do here is part of the challenge.

There are several variables at the top of uMessage which you will have to edit: the corpus, the “n”, the
“inner dictionary” and the “outer dictionary”. If you leave the corpus as eggs.txt, the suggestions will
be garbage. If you leave the inner and outer dictionaries as tries, uMessage will probably be too slow.

8

https://docs.google.com/document/d/11R_uKKobb1_EQwTCzXGrckpPSwJttLxmyILFUTh6IUE/edit?usp=sharing


The point of uMessage is that it is a cool application that uses all of the code you wrote. Just like Zip
was a good stress test for P1, uMessage is a good stress test for P2.

Once you start working on uMessage, if you’ve implemented getWordsAfter correctly, the word sug-
gestions you get in uMessage should be sorted by frequency (conditioned on the previous words), with
highest frequency on the left and lowest frequency on the right. Note that inputs with apostrophes may
not work, (ej. can’t, wouldn’t), and throw an SSLPeerUnverifiedException. This is a bug in uMessage
and you can just ignore it :)

As a simple example, with irc.corpus, the words suggested as first words on a newly-opened chat with
nothing typed should be ["i", "and", "yeah", "well"], in that order, since those are the four words with
the highest frequency at the start of a line, with "i" being the most frequent of the four.

Trying to debug issues with your ordering code on irc.corpus will take a long time (since this corpus
takes a while to load), so it might be a good idea to make a simple test corpus with only a few sentences
where you can work out what the suggested words should be, and using that to quickly figure out
getWordsAfter.

Above and Beyond
DO NOT MIX any of your above and beyond files with the normal code. Before changing your code
for above and beyond, copy the relevant files into the aboveandbeyond package. If your code does not
compile because you did not follow these instructions, you will receive a 0 for all automated tests.

• Completing the ADT : Implement the delete methods for all of the Dictionary classes.

• Alternate Hashing Strategies: Implement both closed and open addressing and perform experimen-
tation to compare performance. Also, design additional hashing functions and determine which
affects performance more: hashing cost, collision-avoidance cost, or your addressing strategy.

• Introspective Sort: Introspective sort is an unstable quicksort variant which switches to heapsort for
inputs which would result in a O(n2) running-time for normal quicksort. Thus, it has an average-
case and a worst-case runtime of O(n lg n), but generally runs faster than heapsort even in the worst
case. Implement IntrospectiveSort, and give a sample input which would result in a quadratic
runtime for normal quicksort (using a median-of-3 partitioning scheme).

• Alternate Text Generation Models: The n-gram model is relatively simple and has some major
drawbacks. You can do more interesting things instead. For example, you might use a part-of-
speech tagger to get the sentences to at least always be coherent. Research more interesting text
generation strategies, implement them, and discuss your results.

9


	NGramToNextChoicesMap
	MoveToFrontList: Another Dictionary
	AVLTree: Another Another Dictionary
	ChainingHashTable: Another Another Another Dictionary
	HashTrieMap: Full Circle!
	MinFourHeap (Again?) and The Sorts
	Write-Up
	uMessage - Do not wait until the last minute for this!

