
Adam Blank Winter 2016Lecture 24

CSE332
Data Abstractions

CSE 332: Data Abstractions

P vs. NP:
E�cient Reductions
Between Problems

More Graph Problems 1

Let’s consider the longest path problem on a graph.

Remember, we were able to do shortest paths using Dijkstra’s.

Take a few minutes to try to solve the longest path problem.

Decision Problems 2

Definition (Decision Problem)
A decision problem (or language) is a set of strings (L ⊆ S∗).
An algorithm (from S∗ to boolean) solves a decision problem when it
outputs true i� the input is in the set.

PRIMES

Input(s): Number x

Output: true i� x is prime

An Algorithm that solves PRIMES
1 isPrime(x) {
2 for (i = 2; i < x; i++) {
3 if (x % i == 0) {
4 return false;
5 }
6 }
7 return true;
8 }

Decision Problems 2

Definition (Decision Problem)
A decision problem (or language) is a set of strings (L ⊆ S∗).
An algorithm (from S∗ to boolean) solves a decision problem when it
outputs true i� the input is in the set.

PRIMES

Input(s): Number x

Output: true i� x is prime

An Algorithm that solves PRIMES
1 isPrime(x) {
2 for (i = 2; i < x; i++) {
3 if (x % i == 0) {
4 return false;
5 }
6 }
7 return true;
8 }

E�cient? 3

In this lecture, we’ll be talking about e�cient reductions. So, naturally,
we have to answer two questions:

What is an e�cient algorithm?
What is a reduction?

E�cient Algorithm
We say an algorithm is e�cient if the worst-case analysis is a
polynomial. Okay, but. . .

n

10000000... is polynomial
3000000000000000n

3 is polynomial
Are those really e�cient?
Well, no, but, in practice. . .

when a polynomial algorithm is found the constants are actually low

Polynomial runtime is a very low bar, if we can’t even get that. . .

Reductions 4

This lecture is about exposing hidden similarities between problems.

We will show that problems that are cosmetically di�erent are
substantially the same!

Our main tool to do this is called a reduction:
Reductions
We have two decision problems, A and B. To show that A is “at least
as hard as” B, we

Suppose we can solve A

Create an algorithm, which calls A as a method, to solve B
To show they’re the same, we have to do both directions.

Reductions 4

This lecture is about exposing hidden similarities between problems.

We will show that problems that are cosmetically di�erent are
substantially the same!

Our main tool to do this is called a reduction:
Reductions
We have two decision problems, A and B. To show that A is “at least
as hard as” B, we

Suppose we can solve A
Create an algorithm, which calls A as a method, to solve B

To show they’re the same, we have to do both directions.

Longest Paths and HAM! 5

Two New Computational Problems
LONG-PATH

Input(s): Unweighted Graph G; Number k

Output: true i� G has a path with k edges

HAM-PATH

Input(s): Unweighted Graph G

Output: true i� G has a path using all vertices

Suppose we could solve LONG-PATH. . . Suppose we could solve HAM-PATH. . .

“Algorithm”
1 HAM−PATH(G) {
2 return LONG−PATH(G, |V| − 1)
3 }

“Algorithm”
1 LONG−PATH(G, k) {
2 for (G

′ =(v1,v2, . . . ,v
k

) in G) {
3 if (HAM−PATH(G

′)) {
4 return true;
5 }
6 }
7 return false;
8 }

Longest Paths and HAM! 5

Two New Computational Problems
LONG-PATH

Input(s): Unweighted Graph G; Number k

Output: true i� G has a path with k edges

HAM-PATH

Input(s): Unweighted Graph G

Output: true i� G has a path using all vertices

Suppose we could solve LONG-PATH. . . Suppose we could solve HAM-PATH. . .

“Algorithm”
1 HAM−PATH(G) {
2 return LONG−PATH(G, |V| − 1)
3 }

“Algorithm”
1 LONG−PATH(G, k) {
2 for (G

′ =(v1,v2, . . . ,v
k

) in G) {
3 if (HAM−PATH(G

′)) {
4 return true;
5 }
6 }
7 return false;
8 }

A 2-CRAYOLA Question 6

Definition (k-coloring)
A k-coloring of a graph G is an assignment of k colors to vertices such
that no two adjacent vertices have the same color.

2-COLOR

Input(s): Graph G

Output: true i� G has a valid 2-coloring

Can we solve this?

Algorithm For 2-COLOR
Try all 2n possible colorings of the
input graph!

Can we solve this e�ciently?

E�cient Algorithm For 2-COLOR
Do a dfs on the graph! Every
time we hit a vertex, assign it the
opposite color from the vertex we
just visited. If there’s a color
conflict, output false. If we
finish with no color conflict,
output true.

A 3-CRAYOLA Question 7

Definition (k-coloring)
A k-coloring of a graph G is an assignment of k colors to vertices such
that no two adjacent vertices have the same color.

3-COLOR

Input(s): Graph G

Output: true i� G has a valid 3-coloring

Ine�cient Algorithm For 3-COLOR
Try all 3n possible colorings of the input graph!

E�cient Algorithm For 3-COLOR
UNKNOWN

A Graph Called “Gadget” 8

Find a valid 3-coloring of this graph. To orient ourselves, I’ve started it:

Another Decision Problem! 9

CIRCUITSAT

Input(s): n-Input/1-Output Circuit C

Output: true i� C has a satisfying assignment

Ine�cient Algorithm For CIRCUITSAT
Try all 2n possible assignments of variables

E�cient Algorithm For CIRCUITSAT
UNKNOWN

Another Decision Problem! 9

CIRCUITSAT

Input(s): n-Input/1-Output Circuit C

Output: true i� C has a satisfying assignment

Ine�cient Algorithm For CIRCUITSAT
Try all 2n possible assignments of variables

E�cient Algorithm For CIRCUITSAT
UNKNOWN

Suspicious. . . 10

CIRCUITSAT

OR
NOT

OR

X Y Z

OUT

3-COLOR

a

bc

d

e f

g

We don’t know how to solve either of these problems. . .

Could they be the same problem in disguise?

Not Gadget with Labels 11

X

OUT

T F

X

OUT

Or Gadget with Labels 12

X Y

OUT

T F

X Y

OUT

Circuit 13

OR
NOT

OR

X Y Z

OUT

T F

X Y Z

OUT

SATISFIABLE Circuit 14

OR
NOT

OR

X Y Z

true

T F

X Y Z

true

Lesson 15

We found a way to “emulate” circuit satisfiability using three coloring!

If we can find a solution to 3-COLOR, we can solve CIRCUITSAT
quickly.

These problems are substantially the same

