Adam Blank Lecture 24 Winter 2016

Data Abstractions

CSE 332: Data Abstractions

P vs. NP:
Efficient Reductions
Between Problems

The \ \

CrRy ens
N

l//”\f"\/'l’ at ,

More Graph Problems 1

Let's consider the longest path problem on a graph.

LIRS

Remember, we were able to do s smg ijkstra’s.
A-O\“\? L\c ()LO v (4&\@ }L\Q
N 0 (™

Take a few mijnutes to try to solve the longes path problem.

Wt is e B 2P Join e g
Commitieh] prr 1n o feaph o

Decision Problems

Definition (Decision Problem)

A decision problem (or language) is a set of strings (L < X*).
An aigorithm (from X* to boolean) solves a decision problem when it
outputs true iff the input is in the set.

Decision Problems

Definition (Decision Problem)

A decision problem (or language) is a set of strings (L < X*).
An algorithm (from X* to boolean) solves a decision problem when it
outputs true iff the input is in the set.

: Number x
Output: true iff x is prime

An Algorithm that solves PRIMES
isPrime(x) {
for (i = 2; i < x; i++) {
if (x 51 ==0) {
return false;
}
1

return true;

O~NOOThA WN -

}

Efficient?

In this lecture, we'll be talking about efficient reductions. So, naturally,
we have to answer two questions:

What is an efficient algorithm?
What is a reduction?

Efficient Algorithm

We say an algorithm is efficient if the worst-case analysis is a
polynomial. Okay, but. ..

10000000...

LN} is polynomial

= 30000000000000007° is polynomial

Are those really efficient?
Well, no, but, in practice. ..

when a polynomial algorithm is found the constants are actually low

Polynomial runtime is a very low bar, if we can't even get that. ..

Reductions 4

This lecture is about exposing hidden similarities between problems.

We will show that problems that are cosmetically different are
substantially the same!

Our main tool to do this is called a reduction:

Reductions

We have two decision problems, A and B. To show that A is “at least
as hard as” B, we

m Suppose we can solve A

Reductions

This lecture is about exposing hidden similarities between problems.

We will show that problems that are cosmetically different are
substantially the same!

Our main tool to do this is called a reduction:

Reductions

We have two decision problems, A and B. To show that A is “at least
as hard as” B, we

m Suppose we can solve A

m Create an algorithm, which calls A as a method, to solve B

To show they're the same, we have to do both directions.

Longest Paths and HAM!

Two New Computational Problems

:_r\(’w)‘ -

LONG-PATH

Input(s): Unweighted Graph G; Number k
Output: true iff G has a path with k edges

HAM-PATH

Input(s): Unweighted Graph G
Output: true iff G has a path using all vertices

~|
LON & =P aTH (G) vi=1)

Longest Paths and HAM!

Two New Computational Problems

LONG-PATH

Input(s): Unweighted Graph G; Number k
Output: true iff G has a path with k edges

HAM-PATH

Input(s): Unweighted Graph G
Output: true iff G has a path using all vertices

Suppose we could solve LONG-PATH. .. Suppose we could solve HAM-PATH. ..

“Algorithm”

I8 HAM-PATH(G) {

2 return LONG-PATH(G, |V| - 1)
3

“Algorithm”
LONG—PATH(G, k) {
for (G’ =(vi,va,...,u) in G) {
if (HAM-PATH(G’)) {
return true;

} (ny_n 8
} Z "
return false; K)~m U

}

O~NOOCTA WN

A 2-CRAYOLA Question

Definition (k-coloring)

A k-coloring of a graph G is an assignment of k colors to vertices such
that no two adjacent vertices have the same color.

Input(s): Graph G
Output: true iff G has a valid 2-coloring

Can we solve this? Can we solve this efficiently?

Algorithm For 2-COLOR Efficient Algorithm For 2-COLOR

Do a dfs on the graph! Every
time we hit a vertex, assign it the
opposite color from the vertex we
just visited. If there's a color

Try all 2" possible colorings of the
input graph!

conflict, output false. If we
finish with no color conflict,
output true.

A 3-CRAYOLA Question

Definition (k-coloring)

A k-coloring of a graph G is an assignment of k colors to vertices such
that no two adjacent vertices have the same color.

Input(s): Graph G
Output: true iff G has a valid 3-coloring

Inefficient Algorithm For 3-COLOR

Try all 3" possible colorings of the input graph!

Efficient Algorithm For 3-COLOR

UNKNOWN

A Graph Called “Gadget”

Find a valid 3-coloring of this graph. To orient ourselves, |'ve started it:

Another Decision Problem!

Input(s): n-Input/1-Output Circuit C
Output: true iff C has a satisfying assignment

Another Decision Problem!

CIRCUITSAT

Input(s): n-Input/1-Output Circuit C

Output: true iff C has a satisfying assignment

Inefficient Algorithm For CIRCUITSAT

Try all 2" possible assignments of variables

Efficient Algorithm For CIRCUITSAT

UNKNOWN

Suspicious. . . 10

CIRCUITSAT

ouT

We don’t know how to solve either of these problems. ..

Could they be the same problem in disguise?

Not Gadget with Labels

ouT

ouT

11

ircuit

SATISFIABLE Circuit

Lesson

We found a way to “emulate” circuit satisfiability using three coloring!

If we can find a solution to 3-COLOR, we can solve CIRCUITSAT
quickly.

These problems are substantially the same

15

