Adam Blank

Winter 2016

Lecture 24

Data Abstractions

P vs. NP: Efficient Reductions Between Problems

The Crayons
are
important!

Let's consider the **longest path** problem on a graph.

Remember, we were able to do shortest paths using Dijkstra's.

Take a few minutes to try to solve the longest path problem.

What is the Hoof engles in the longer

Definition (Decision Problem)

A decision problem (or language) is a set of strings $(L \subseteq \Sigma^*)$.

An algorithm (from Σ^* to boolean) solves a decision problem when it outputs true iff the input is in the set.

Definition (Decision Problem)

A decision problem (or language) is a set of strings $(L \subseteq \Sigma^*)$. An algorithm (from Σ^* to boolean) solves a decision problem when it outputs true iff the input is in the set.

PRIMES

Input(s): Number x

Output: true iff x is prime

An Algorithm that solves **PRIMES**

```
1 isPrime(x) {
2    for (i = 2; i < x; i++) {
3        if (x % i == 0) {
4            return false;
5        }
6    }
7    return true;
8 }</pre>
```

Efficient? 3

In this lecture, we'll be talking about **efficient reductions**. So, naturally, we have to answer two questions:

- What is an efficient algorithm?
- What is a reduction?

Efficient Algorithm

We say an algorithm is **efficient** if the worst-case analysis is a **polynomial**. Okay, but. . .

- \blacksquare $n^{10000000...}$ is polynomial

Are those really efficient? Well, no, but, in practice...

when a polynomial algorithm is found the constants are actually low

Polynomial runtime is a very low bar, if we can't even get that...

Reductions 4

This lecture is about exposing **hidden** similarities between problems.

We will show that problems that are **cosmetically different** are **substantially the same**!

Our main tool to do this is called a reduction:

Reductions

We have two **decision problems**, **A** and **B**. To show that **A** is "at least as hard as" **B**, we

Suppose we can solve A

Reductions 4

This lecture is about exposing **hidden** similarities between problems.

We will show that problems that are cosmetically different are substantially the same!

Our main tool to do this is called a reduction:

Reductions

We have two **decision problems**, ${\bf A}$ and ${\bf B}$. To show that ${\bf A}$ is "at least as hard as" ${\bf B}$, we

- Suppose we can solve **A**
- Create an algorithm, which calls **A** as a method, to solve **B**

To show they're the same, we have to do both directions.

Two New Computational Problems

LONG-PATH

Input(s): Unweighted Graph G; Number k
Output: true iff G has a path with k edges

HAM-PATH

Input(s): Unweighted Graph *G*

Output: true iff G has a path using all vertices

Two New Computational Problems

LONG-PATH

Input(s): Unweighted Graph G; Number k
Output: true iff G has a path with k edges

HAM-PATH

Input(s): Unweighted Graph G

Output: true iff G has a path using all vertices

Suppose we could solve $\textbf{LONG-PATH}.\ ..\$

"Algorithm"

```
HAM-PATH(G) {
    return LONG-PATH(G, |V| - 1)
```

Suppose we could solve HAM-PATH...

"Algorithm"

```
1 LONG-PATH(G, k) {
2    for (G' = (v<sub>1</sub>, v<sub>2</sub>,...,v<sub>k</sub>) in G) {
3        if (HAM-PATH(G')) {
4            return true;
5        }
6     }
7     return false;
```

Definition (*k*-coloring)

A k-coloring of a graph G is an assignment of k colors to vertices such that no two adjacent vertices have the same color.

2-COLOR

Input(s): Graph G

Output: true iff *G* has a valid 2-coloring

Can we solve this?

Algorithm For 2-COLOR

Try all 2^n possible colorings of the input graph!

Can we solve this efficiently?

Efficient Algorithm For 2-COLOR

Do a dfs on the graph! Every time we hit a vertex, assign it the opposite color from the vertex we just visited. If there's a color conflict, output false. If we finish with no color conflict, output true.

Definition (*k*-coloring)

A k-coloring of a graph G is an assignment of k colors to vertices such that no two adjacent vertices have the same color.

3-COLOR

Input(s): Graph G

Output: true iff *G* has a valid 3-coloring

Inefficient Algorithm For 3-COLOR

Try all 3^n possible colorings of the input graph!

Efficient Algorithm For 3-COLOR

UNKNOWN

Find a valid 3-coloring of this graph. To orient ourselves, I've started it:

CIRCUITSAT

Input(s): n-Input/1-Output Circuit C

 ${f Output}: \quad {f true iff } C \ {f has a satisfying assignment}$

CIRCUITSAT

Input(s): n-Input/1-Output Circuit C

 $\textbf{Output} : \hspace{1.5cm} \texttt{true iff } C \text{ has a satisfying assignment}$

Inefficient Algorithm For CIRCUITSAT

Try all 2^n possible assignments of variables

Efficient Algorithm For CIRCUITSAT

UNKNOWN

CIRCUITSAT

3-COLOR

We don't know how to solve either of these problems...

Could they be the same problem in disguise?

Circuit 13

If we can find a solution to 3-COLOR, we can solve CIRCUITSAT quickly.

These problems are substantially the same