CSE 332

Data Structures and Parallelism
Algorithm Analysis 2
Outline

1 Summations

2 Warm-Ups

3 Analyzing Recursive Code

4 Generating and Solving Recurrences
Some Common Series

- Gauss’ Sum: \[\sum_{i=0}^{n} i = \frac{n(n+1)}{2} \]

- Infinite Geometric Series: \[\sum_{i=0}^{\infty} x^i = \frac{1}{1-x}, \text{ when } |x| < 1. \]

- Finite Geometric Series: \[\sum_{i=0}^{n} x^i = \frac{1-x^{n+1}}{1-x}, \text{ when } x \neq 1. \]
Let x and L be LinkedList Nodes.

Analyzing append

```java
append(x, L) {
    Node curr = L;
    while (curr != null && curr.next != null) {
        curr = curr.next;
    }
    curr.next = x;
}
```

What is . . .

- a lower bound on the time complexity of append?

- an upper bound on the time complexity of append?
Let x and L be LinkedList Nodes.

Analyzing `append`

```java
append(x, L) {
    Node curr = L;
    while (curr != null && curr.next != null) {
        curr = curr.next;
    }
    curr.next = x;
}
```

What is ...
- a lower bound on the time complexity of `append`?
 $\Omega(n)$, because we always **must** do n iterations of the loop.

- an upper bound on the time complexity of `append`?
Let x and L be LinkedList Nodes.

```java
Analyzing append

```append(x, L) {
 Node curr = L;
 while (curr != null && curr.next != null) {
 curr = curr.next;
 }
 curr.next = x;
}
```

What is . . .

- a lower bound on the time complexity of append?
  $\Omega(n)$, because we always **must** do $n$ iterations of the loop.

- an upper bound on the time complexity of append?
  $O(n)$, because we never do **more** than $n$ iterations of the loop.
Let $x$ and $L$ be LinkedList Nodes.

Analyzing append

```java
append(x, L) {
 Node curr = L;
 while (curr != null && curr.next != null) {
 curr = curr.next;
 }
 curr.next = x;
}
```

What is ... 

- a lower bound on the time complexity of `append`?  
  $\Omega(n)$, because we always **must** do $n$ iterations of the loop.

- an upper bound on the time complexity of `append`?  
  $O(n)$, because we never do **more** than $n$ iterations of the loop.

Since we can **upper** and **lower** bound the time complexity with the same complexity class, we can say `append` runs in $\Theta(n)$. 
Pre-Condition: $L_1$ and $L_2$ are sorted.

Post-Condition: Return value is sorted.

```python
merge(L_1, L_2) {
 p1, p2 = 0;
 While both lists have more elements:
 Append the smaller element to L.
 Increment p1 or p2, depending on which had the smaller element
 Append any remaining elements from L_1 or L_2 to L
 return L
}
```

What is the... (remember the lists are Nodes)
- best case # of comparisons of merge?
- worst case # of comparisons of merge?
- worst case space usage of merge?
Pre-Condition: $L_1$ and $L_2$ are sorted.
Post-Condition: Return value is sorted.

```java
merge(L_1, L_2) {
 p1, p2 = 0;
 While both lists have more elements:
 Append the smaller element to L.
 Increment p1 or p2, depending on which had the smaller element
 Append any remaining elements from L_1 or L_2 to L
 return L
}
```

What is the... (remember the lists are Nodes)

- best case # of comparisons of `merge`?
  $\Omega(1)$. Consider the input: [0], [1, 2, 3, 4, 5, 6].

- worst case # of comparisons of `merge`?

- worst case space usage of `merge`?
Merge

Pre-Condition: $L_1$ and $L_2$ are sorted.

Post-Condition: Return value is sorted.

```
merge(L_1, L_2) {
 p1, p2 = 0;
 While both lists have more elements:
 Append the smaller element to L.
 Increment p1 or p2, depending on which had the smaller element
 Append any remaining elements from L_1 or L_2 to L
return L
}
```

What is the... (remember the lists are Nodes)

- best case # of comparisons of merge? 
  $\Omega(1)$. Consider the input: [0], [1, 2, 3, 4, 5, 6].

- worst case # of comparisons of merge? 
  $O(n)$. Consider the input: [1, 3, 5], [2, 4, 6].

- worst case space usage of merge?
Pre-Condition: $L_1$ and $L_2$ are sorted.
Post-Condition: Return value is sorted.

```c
merge(L_1, L_2) {
 p1, p2 = 0;
 While both lists have more elements:
 Append the smaller element to L.
 Increment p1 or p2, depending on which had the smaller element
 Append any remaining elements from L_1 or L_2 to L
 return L
}
```

What is the...(remember the lists are Nodes)

- best case # of comparisons of merge?
  $\Omega(1)$. Consider the input: [0], [1, 2, 3, 4, 5, 6].

- worst case # of comparisons of merge?
  $O(n)$. Consider the input: [1, 3, 5], [2, 4, 6].

- worst case space usage of merge?
  $O(n)$, because we allocate a constant amount of space per element.
Well, we did merge, what did you think was next?

Consider the following code:

```java
Merge Sort

sort(L) {
 if (L.size() < 2) {
 return L;
 }

 else {
 int mid = L.size() / 2;
 return merge(
 sort(L.subList(0, mid)),
 sort(L.subList(mid, L.size()))
);
 }
}
```

What is the worst case/best case # of comparisons of sort?

Yeah, yeah, it's $O(n \log n)$, but why?
What is a recurrence?

In CSE 311, you saw a bunch of questions like:

**Induction Problem**

Let \( f_0 = 0, f_1 = 1, f_n = f_{n-1} + f_{n-2} \) for all \( n \geq 2 \). Prove \( f_n < 2^n \) for all \( n \in \mathbb{N} \).

(Remember the Fibonacci Numbers? You’d better bet they’re going to show up in this course!)

That’s a recurrence. That’s it.

**Definition (Recurrence)**

A recurrence is a recursive definition of a function in terms of smaller values.
Merge Sort is hard; so...

Let's start with trying to analyze this code:

```java
LinkedList Reversal

reverse(L) {
 if (L == null) { return null; }
 else if (L.next == null) { return L; }
 else {
 Node front = L;
 Node rest = L.next;
 L.next = null;

 Node restReversed = reverse(rest);
 append(front, restReversed);
 }
}
```

Notice that `append` is the same function from the beginning of lecture that had runtime $O(n)$.

So, what is the time complexity of `reverse`?

We split the work into two pieces:
- Non-Recursive Work
- Recursive Work
Non-Recursive Work: $O(n)$, which means we can write it as $c_0 + c_1 n$ for some constants $c_0$ and $c_1$. 

```java
LinkedList Reversal
reverse(L) {
 if (L == null) { return null; } // O(1)
 else if (L.next == null) { return L; } // O(1)
 else {
 Node front = L; // O(1)
 Node rest = L.next; // O(1)
 L.next = null; // O(1)

 Node restReversed = reverse(rest); // O(n)
 append(front, restReversed); // O(n)
 }
}
```
Non-Recursive Work

Linked List Reversal

```java
reverse(L) {
 if (L == null) { return null; }
 else if (L.next == null) { return L; }
 else {
 Node front = L;
 Node rest = L.next;
 L.next = null;

 Node restReversed = reverse(rest);
 append(front, restReversed);
 }
}
```

Non-Recursive Work: $\mathcal{O}(n)$, which means we can write it as $c_0 + c_1 n$ for some constants $c_0$ and $c_1$.

Recursive Work: The work it takes to do reverse on a list one smaller. Putting these together almost gives us the recurrence:

$$T(n) = c_0 + c_1 n + T(n - 1)$$

We’re missing the base case!
reverse Recurrence

LinkedList Reversal

```java
reverse(L) {
 if (L == null) { return null; }
 if (L.next == null) { return L; }
 else {
 Node front = L;
 Node rest = L.next;
 L.next = null;

 Node restReversed = reverse(rest);
 append(front, restReversed);
 }
}
```

\[ T(n) = \begin{cases} 
  d_0 & \text{if } n = 0 \\
  d_0 & \text{if } n = 1 \\
  c_0 + c_1 n + T(n-1) & \text{otherwise} 
\end{cases} \]

Now, we need to solve the recurrence.
Solving the reverse Recurrence

\[
T(n) = \begin{cases} 
  d_0 & \text{if } n = 0 \\
  d_1 & \text{if } n = 1 \\
  c_0 + c_1 n + T(n-1) & \text{otherwise}
\end{cases}
\]

\[
T(n) = (c_0 + c_1 n) + T(n-1)
\]
\[
= (c_0 + c_1 n) + (c_0 + c_1 (n-1)) + T(n-2)
\]
\[
= (c_0 + c_1 n) + (c_0 + c_1 (n-1)) + (c_0 + c_1 (n-2)) + \ldots + (c_0 + c_1 (2)) + d_0 + d_0
\]
\[
= \sum_{i=0}^{n-2} (c_0 + c_1 (n-i)) + 2d_0
\]
\[
= \sum_{i=0}^{n-2} c_0 + \sum_{i=0}^{n-2} c_1 (n-i) + 2d_0
\]
\[
= (n-1) c_0 + c_1 \sum_{i=1}^{n-1} i + 2d_0
\]
\[
= (n-1) c_0 + c_1 \left(\frac{(n-1)n}{2}\right) + 2d_0
\]
\[
= O(n^2)
\]
A recurrence where we solve some constant piece of the problem (e.g. “-1”, “-2”, etc.) is called a **Linear Recurrence**.

We solve these like we did above by **Unrolling the Recurrence**.

This is a fancy way of saying “plug the definition into itself until a pattern emerges”. 
Today’s Takeaways!

- Understand that Big-Oh is just an “upper bound” and Big-Omega is just a “lower bound”

- Know how to make a recurrence from a recursive program

- Understand what a linear recurrence is

- Be able to find a closed form linear recurrences

- Know the common summations