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CSE 332: Data Structures and Parallelism

Algorithm Analysis 2
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Some Common Series 1

Gauss’ Sum:
n

∑
i=0

i = n(n+1)
2

Infinite Geometric Series:
∞

∑
i=0

xi = 1
1−x

, when ∣x∣ < 1.

Finite Geometric Series:
n

∑
i=0

xi = 1−xn+1

1−x
, when x ≠ 1.



Warm-Up #1: append 2

Let x and L be LinkedList Nodes.

Analyzing append
1 append(x, L) {
2 Node curr = L;
3 while (curr != null && curr.next != null) {
4 curr = curr.next;
5 }
6 curr.next = x;
7 }

What is . . .
a lower bound on the time complexity of append?

Ω(n), because we always must do n iterations of the loop.

an upper bound on the time complexity of append?

O(n), because we never do more than n iterations of the loop.

Since we can upper and lower bound the time complexity with the same
complexity class, we can say append runs in Θ(n).
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Merge 3

Pre-Condition: L1 and L2 are sorted.
Post-Condition: Return value is sorted.
Merge

1 merge(L1, L2) {
2 p1, p2 = 0;
3 While both lists have more elements:
4 Append the smaller element to L.
5 Increment p1 or p2, depending on which had the smaller element
6 Append any remaining elements from L1 or L2 to L
7 return L
8 }

What is the. . . (remember the lists are Nodes)
best case # of comparisons of merge?

Ω(1). Consider the input: [0], [1, 2, 3, 4, 5, 6].

worst case # of comparisons of merge?

O(n). Consider the input: [1, 3, 5], [2, 4, 6].

worst case space usage of merge?

O(n), because we allocate a constant amount of space per element.
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Well, we did merge, what did you think was next? 4

Consider the following code:

Merge Sort
1 sort(L) {
2 if (L.size() < 2) {
3 return L;
4 }
5 else {
6 int mid = L.size() / 2;
7 return merge(
8 sort(L.subList(0, mid)),
9 sort(L.subList(mid, L.size()))

10 );
11 }
12 }

What is the worst case/best case # of comparisons of sort?

Yeah, yeah, it’s O(n lgn), but why?



Recurrences 5

What is a recurrence?

In CSE 311, you saw a bunch of questions like:

Induction Problem
Let f0 = 0, f1 = 1, fn = fn−1+ fn−2 for all n ≥ 2. Prove fn < 2n for all n ∈N.

(Remember the Fibonacci Numbers? You’d better bet they’re going to
show up in this course!)

That’s a recurrence. That’s it.

Definition (Recurrence)
A recurrence is a recursive definition of a function in terms of smaller
values.



Merge Sort is hard; so. . . 6

Let’s start with trying to analyze this code:

LinkedList Reversal
1 reverse(L) {
2 if (L == null) { return null; }
3 else if (L.next == null) { return L; }
4 else {
5 Node front = L;
6 Node rest = L.next;
7 L.next = null;
8
9 Node restReversed = reverse(rest);

10 append(front, restReversed);
11 }
12 }

Notice that append is the same function from the beginning of lecture
that had runtime O(n).

So, what is the time complexity of reverse?

We split the work into two pieces:
Non-Recursive Work
Recursive Work



Non-Recursive Work 7

LinkedList Reversal
1 reverse(L) {
2 if (L == null) { return null; } //O(1)
3 else if (L.next == null) { return L; } //O(1)
4 else {
5 Node front = L; //O(1)
6 Node rest = L.next; //O(1)
7 L.next = null; //O(1)
8
9 Node restReversed = reverse(rest);

10 append(front, restReversed); //O(n)
11 }
12 }

Non-Recursive Work: O(n), which means we can write it as c0+c1n for
some constants c0 and c1.



Non-Recursive Work 8

LinkedList Reversal
1 reverse(L) {
2 if (L == null) { return null; }
3 else if (L.next == null) { return L; }
4 else {
5 Node front = L;
6 Node rest = L.next;
7 L.next = null;
8
9 Node restReversed = reverse(rest);

10 append(front, restReversed);
11 }
12 }

Non-Recursive Work: O(n), which means we can write it as c0+c1n for
some constants c0 and c1.
Recursive Work: The work it takes to do reverse on a list one smaller.
Putting these together almost gives us the recurrence:

T(n) = c0+c1n+T(n−1)

We’re missing the base case!



reverse Recurrence 9

LinkedList Reversal
1 reverse(L) {
2 if (L == null) { return null; }
3 if (L.next == null) { return L; }
4 else {
5 Node front = L;
6 Node rest = L.next;
7 L.next = null;
8
9 Node restReversed = reverse(rest);

10 append(front, restReversed);
11 }
12 }

T(n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d0 if n = 0
d0 if n = 1
c0+c1n+T(n−1) otherwise

Now, we need to solve the recurrence.



Solving the reverse Recurrence 10

T(n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d0 if n = 0
d1 if n = 1
c0+c1n+T(n−1) otherwise

T(n) = (c0+c1n) + T(n−1)
= (c0+c1n) + (c0+c1(n−1)) + T(n−2)
= (c0+c1n) + (c0+c1(n−1)) + (c0+c1(n−2))+ ...+(c0+c1(2))+d0+d0

=
n−2

∑
i=0
(c0+c1(n− i)) + 2d0

=
n−2

∑
i=0

c0+
n−2

∑
i=0

c1(n− i) + 2d0

= (n−1)c0+c1

n−1

∑
i=1

i + 2d0

= (n−1)c0+c1(
(n−1)n

2
) + 2d0

=O(n2)



Solving Linear Recurrences 11

A recurrence where we solve some constant piece of the problem (e.g.
“-1”, “-2”, etc.) is called a Linear Recurrence.

We solve these like we did above by Unrolling the Recurrence.

This is a fancy way of saying “plug the definition into itself until a
pattern emerges”.



Today’s Takeaways! 12

Understand that Big-Oh is just an “upper bound” and Big-Omega is
just a “lower bound”

Know how to make a recurrence from a recursive program

Understand what a linear recurrence is

Be able to find a closed form linear recurrences

Know the common summations
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