
CSE 332: Data Abstractions Autumn 2015
Practice Midterm Exam

Name:

ID #:

TA: Section:

INSTRUCTIONS:

• You have 50 minutes to complete the exam.

• The exam is closed book and closed notes. You may not use cell phones or calculators.

• All answers you want graded should be written on the exam paper.

• If you need extra space, use the back of a page.

• The problems are of varying difficulty.

• If you get stuck on a problem, move on and come back to it later.

• It is to your advantage to read all the problems before beginning the exam.

Problem Points Score Problem Points Score

1 8 6 15

2 3 7 8

3 3 8 15

4 6 9 10

5 6 10 15

Σ 89

Page 1 of 10



One Liners.
This section has questions that require very short answers. To get full credit, you should

answer in no more than one sentence per question.

1. X Marks The Spot [8 points]
For each of the following rows, circle each option on the right that is true for the function on the left and
X each option that is false for the function on the left.

n∑
i=0

i2 O(n) O(n2) O(n3) O(n4)

3n O(3n) O(3n/2) Ω(3n) Ω(3n/2)

10000n25 O(n) O(n26) Ω(n) Ω(n26)

log n O(log n) O(log log n) Ω(log n) Ω(log log n)

nn O(20000n) Ω(20000n) Θ(20000n) Θ(nn + 20000n)

2. find The Error [3 points]
Consider a dictionary implemented using a sorted array. Consider the following argument:

We claim that find() is amortized O(1) in this implementation. Consider a sequence
of lg(n) operations. Each operation takes lg(n) time; so, the amortized cost of each

operation is
lg(n)

lg(n)
= O(1).

This argument is faulty. Explain why it’s faulty and give a correct (tight) asymptotic bound for the actual
amortized cost.

3. It’s Olementary, My Dear Watson [3 points]
Let f : N → N and g : N → N be increasing functions with f(n) 6= g(n) for any n ∈ N. Consider the
statement:

f(n) ∈ Ω(g(n)) and g(n) ∈ Ω(f(n))

Is this statement always, sometimes, or never true? Explain your answer in one sentence.

Page 2 of 10



4. The-ta Knows Best! [6 points]
For each of the following, give a Θ(−) bound, in terms of n, for the worst case runtime of the method.

(a) (2 points)

1 int hello(int n) {
2 if (n == 0) {
3 return 0;
4 }
5 for (int i = 0; i < n; i++) {
6 for (int j = 0; j < n ∗ n; j++) {
7 System.out.println("HELLO");
8 }
9 }

10 return hello(n − 1);
11 }

Runtime

(b) (2 points)

1 void whee(int n) {
2 for (int i = 1; i < n; i ∗= 2) {
3 for (int j = 1; j < n; j ∗= 3) {
4 System.out.println("WHEE!");
5 }
6 }
7 for (int k = n/2; k < n; k++) {
8 System.out.println("WOAH!");
9 }

10 }

Runtime

(c) (2 points)

1 void flipflop(int n, int sum) {
2 if (n > 10000) {
3 for (int i = 0; i < n ∗ n ∗ n; i++) {
4 sum++;
5 }
6 }
7 else {
8 for (int i = 0; i < n ∗ n ∗ n ∗ n; i++) {
9 sum++;

10 }
11 }
12 }

Runtime

Page 3 of 10



5. Analysis [6 points]
For each of the following, determine the runtime of the algorithm/operation:

(a) (2 points) Worst case find in a B-Tree

Runtime

(b) (4 points) Best case insert in a hash table with size n and a current λ = 1 if the collision resolution
strategy is:

• Separate Chaining

Runtime

• Double Hashing

Runtime

Page 4 of 10



6. Choose The Data Structure [15 points]
For each of the following, decide which data structure is most appropriate to solve the problem:

AVL Tree B-Tree Bit Set FIFO Queue Hash Table

Linked List Heap Stack MTF List Vanilla BST

(a) (3 points) An operating system needs to schedule when to run each of the current processes.

(b) (3 points) You want to store 1MB of non-comparable data and you expect to run the find operation
very frequently.

(c) (3 points) You want to keep track of ASCII characters that are allowed in a valid password.

(d) (3 points) Google (which has petabytes of data) wants to store search queries in such a way that they
can easily find the closest alphabetical query to a new user query.

(e) (3 points) A grocery store wants to make a database of their products (they only have about 5000
unique products) so that employees can look up the aisle that a particular product is in by name.

Page 5 of 10



Basic Techniques.
This part will test your ability to apply techniques that have been explicitly identified in lecture
and reinforced through sections and homeworks. Remember to show your work and justify
your claims.

7. AVL Trees [8 points]
Insert 1, 2, 7, 6, 8, 3, 4, 5 into an AVL tree in that order. You do not have to show your intermediary steps,
but no work and a wrong answer will receive no credit.

Page 6 of 10



8. Hashing [15 points]
You know in advance that you will never put more than six strings into a particular hash table.

(a) (2 points) If you had a choice between 6 and 7 as your table size, which would you choose? Why?

(b) (3 points) Insert 1, 5, 9, 12, 37, 16 into your hash table using the hash function h(x) = x and
separate chaining.

(c) (2 points) What is the load factor of your hash table from part (b)?

(d) (3 points) Insert the same numbers into an empty version of your hash table using the hash function
h(x) = x and quadratic probing.

(e) (3 points) Does your hash table from part (d) have primary clustering? What about secondary
clustering?

(f) (2 points) What is the load factor of your hash table from part (d)?

Page 7 of 10



9. B-Trees [10 points]

Consider the following “B-Tree”:

01
03

07
05

9 11 13 15

(a) (2 points) What are M = and L = ?

(b) (5 points) List (and fix, if possible) everything that you can find that is wrong with the above B-Tree.

(c) (3 points) Suppose that you know the following facts about a computer system:

• 1 page on disk is 1024 bytes

• Keys are 4 bytes

• Pointers are 8 bytes

• Key/Value Pairs are 32 bytes

If you want to use a B-Tree on this system, what should you choose M and L to be?

Page 8 of 10



A Moment’s Thought!
This section tests your ability to think a little bit more insightfully. The approaches necessary
to solve these problems may not be immediately obvious. Remember to show your work and
justify your claims.

10. Treaps! [15 points]
In this problem, we define and analyze a new data structure called a Treap. A treap is a combination of
a BST (tre-) and a heap (-eap). Operations on treaps are defined as follows:

void insert(n)

• Generate a random priority p.

• Do a standard BST insert into the treap of (n, p) completely ignoring the priority.

• Fix the Treap so that the keys follow the BST Property and the priorities follow the Min-Heap
Property. (Note that the treap does not have to obey the Heap STRUCTURE Property.)

(a) (6 points) Suppose that we have a random number generator that will generate the following sequence
of random numbers: 5, 3, 7, 2, 4, . . .

• Insert c, b, e, q, h into a treap in that order.
Hint: After doing each BST insert, use AVL Rotations on the inserted element until the Heap
Property is satisfied.

• Is your resulting treap an AVL tree? Why or why not?

Page 9 of 10



(b) (4 points) Suppose we implement deleteMin on a treap as follows (where delete is defined with
lazy deletion):

1 int deleteMin() {
2 min = findMinKey()
3 return delete(min);
4 }

• What is the best case runtime of this operation?

• What is the worst case runtime of this operation?

Page 10 of 10


