
CSE 332: Data Abstractions

Games, Minimax, and Alpha-Beta Pruning
This handout describes the most essential algorithms for game-playing computers. We begin with an analysis of
a particular partial Tic-Tac-Toe game and go through several algorithms.

Playing Games
To play a game of Tic-Tac-Toe, two players (X and O) alternate making moves. The first player to get three of
their letter in a row wins. Usually, the board starts empty, but in the interest of a reasonable example, we’ll look
at a partially played game instead:

X O X

O O

X

X O X

X O O

X

X O X

X O O

O X

X O X

X O O

O X X

X O X

X O O

O X

X O X

O O

X X

X O X

O O O

X X

X O X

O O

X O X

X O X

O O

X X

X O X

O O O

X X

X O X

O O

O X X

X O X

X O O

O X X

X’s Turn

O’s Turn

X’s Turn

O’s Turn

X must choose one of these moves

We make a few observations about the game above:

• If X and O are both playing optimally, O will win. (Why?)

• The leaves of the tree are “terminal positions” of the game.

• Moves alternate between the two players.

This diagram is called a game tree and it’s generated by starting at a move and recursively generating all the
possible moves that could be made until the game ends. Putting this idea into pseudocode, we have:

1 void printTerminalPositions(Position p) {
2 if (p is a leaf) {
3 print p
4 }
5 else {
6 for (move in p.getMoves()) {
7 p.applyMove(move);
8 printTerminalPositions(move);
9 p.undoMove();

10 }
11 }
12 }

Notice that this is a recursive backtracking
algorithm.

The definitions of getMoves, applyMove,
and undoMove depend on the game that
we’re playing. For example, in Tic-Tac-Toe,
getMoves returns a list of all the valid X
moves (or O moves, depending on the player’s
turn).

1



In a two player game (like Tic-Tac-Toe), there are three possible outcomes: I win I lose We draw
Because every leaf must be one of these options, we can give them numerical values to evaluate how good they
are. Since there are only these three, we use +1 for win, 0 for draw, and −1 for lose. Importantly, these values
are the only thing about the position that we actually care about! If we know a move is a +1, it doesn’t matter
what exactly the series of moves we made is. So, taking this into account, we re-draw our game tree:

X O X

O O

X

0

-1 -1 -1 -1

0

X’s Turn

O’s Turn

X’s Turn

O’s Turn

X must choose one of these moves

Now, to figure out which move to make, all we have to do is figure out the values of the blue moves. To do this,
we make a major assumption:

Our opponent will make the best possible move they can.

Intuitively, if we give our opponent the benefit of the doubt, then we can’t be surprised by any move they make.
The best possible move for our opponent is the worst possible move for us. To figure out the values of the blue
moves, we recursively figure out the values of the moves below them in the game tree. There are two cases:

• If it’s our turn, then we’ll take the best possible move we can. In other words, we take the maximum value
of the children’s values.

• If it’s our opponent’s turn, then they will give us the worst possible move they can. In other words, we
take the minimum value of the children’s values.

So, on the lines labeled “X’s Turn”, we take the maximum from below, and on the lines labeled “O’s Turn”, we
take the minimum from below. The filled in game tree looks like this:

X O X

O O

X

-1

0

0

-1

-1

-1 -1

-1

-1 0

0

X’s Turn

O’s Turn

X’s Turn

O’s Turn

X must choose one of these moves

Unfortunately for us, since all of the choices we have are “-1”, it means no matter what we do, a perfect opponent
can always force us to lose this game of Tic-Tac-Toe. If we follow the -1’s down the game tree, we can see the
moves in every case that make us lose.

2



Minimax
The idea we just used to fill in the Tic-Tac-Toe board is a general one called Minimax. First, we describe the
general algorithm, and then we get into some important changes that must be implemented in practice.

The Algorithm
1 int minimax(Position p) {
2 if (p is a leaf) {
3 // evaluate tells us the
4 // value of the current
5 // position
6 return p.evaluate();
7 }
8
9 int bestValue = −∞;

10 for (move in p.getMoves()) {
11 p.applyMove(move);
12 int value = −minimax(p);
13 p.undoMove();
14 if (value > bestValue) {
15 bestValue = value;
16 }
17 }
18 }

This really is the same algorithm that we describe above. Notice
the − in front of the recursive call. This is because the move after
us is our opponent who is attempting to do the opposite thing from
us. Mathematically, this works because

max(a, b) = −min(−a,−b)

When writing a bot to play a game, we’d also need to keep track
of the actual move corresponding to the best score. This involves a
small addition to the if statement where we update the best score.
Notice that we’re only interested in the very next move. We’re using
the future move to help us understand the next move better.

The version of the algorithm we’ve described here is usually called
negamax, because it uses this property to reduce code redundancy.

Using Minimax in a Real Game
Since our goal is to ultimately implement a chess bot, let’s do some back-of-the-hand calculations on a chess
game. The branching factor of a tree is the number of children a node has. Since some positions in chess have
more moves than others, we work with the average branching factor instead. It turns out in chess, the average
branching factor is approximately 35. The average chess game lasts approximately 40 moves. Putting these
numbers together, we would need to evaluate at least 3540 ≈ 5.8 × 1061 leaves to use this method in a real
chess game. If we were able to evaluate 1 trillion leaves per second, it would take at least 1048 seconds (which
is more than 1030 times the number of seconds the universe has existed). This is clearly infeasible.

So, in the real world, instead of evaluating all the way down to the leaves, we estimate the leaves by going several
moves ahead. Although this is less accurate, it’s the best we can do. The only change this makes to the code is
to add a second parameter depth and change our base case to depth == 0 in addition to checking for a leaf.

Unfortunately, this also makes our evaluation function more complicated, because we must estimate how good
a position is without knowing if it actually leads to a win.
A natural question to ask is “how many levels ahead can we look?” (we call these ply). You will determine this
yourself experimentally on the homework, but the best chess bots in the world can look about 20 ply ahead; you
should expect your bot to be able to do a few less than half of that.

To review, in the real world. . .

• We only look a few moves ahead instead of going to the end of the game

• The evaluation function takes on a much larger range of numbers than just -1, 0, and 1, because we’re
less sure of the value of the position.

In p3, you will be provided with a reasonable evaluation function. You may edit it if you like, but it’s not required.
Your bot will be given three minutes for each game (and it will gain two seconds every time it makes a move).
This is much less time than it sounds like it is.

3



Parallel Minimax
The Algorithm

1 int minimax(Position p) {
2 if (p is a leaf) {
3 return p.evaluate();
4 }
5
6 int bestValue = −∞;
7 parallel (move in p.getMoves()) {
8 p = p.copy();
9 int value = −minimax(p);

10 if (value > bestValue) {
11 bestValue = value;
12 }
13 }
14 }

Minimax is a naturally parallelizable algorithm. Each “node” of the
game tree can be run on independent threads. Even though the
algorithm is very similar there are a couple of gotchas:

• Since different threads will be working at the same time, they
can’t share one position. This means you’ll need to copy the
position for each thread.

• As always, you’ll want to have a cutoff. Your cutoff should
be in terms of the depth remaining of the tree.

• Make sure you use divide and conquer to get the threads
running as quickly as possible.

Alpha-Beta Pruning
Alpha-beta Pruning is a more efficient version of Minimax that avoids considering branches of the game tree that
are irrelevant. Before getting too deep into the algorithm, it is very important to note that a correct Alpha-beta
Search will return the same answer as Minimax. In other words, it is not an approximation algorithm, it
only ignores moves that cannot change the answer. What might such a move look like? Consider the following:

10

50 60

Y

3 X

Max’s Turn

Min’s Turn

Max’s Turn

Suppose that we’ve gone through most of the game tree and evaluated the first three leaves. The question that
remains is “is it possible that Y is a better move than the 10?” ” If it is, then we have to evaluate X; otherwise,
we don’t have to waste the time. It turns out to not matter, here’s why:

• If X ≥ 3, then Min would choose the 3; so, Y = 3. But, this is less than the 10 we can already get.

• If X < 3, then Min would not choose it; so, Y < 3. But, this is less than the 10 we can already get.

More succinctly, because Y = min(3, X), we know that Y ≤ 3 which is less than another move we already
found. It follows that we can ignore this last value. This sort of “bounding” argument can be very powerful.
Let’s consider another game tree where we write down all of the bounds as we go:

?

X

A

30 40

B

50 20

Y

C

2 4

D

25 35

Z

E

1 2

F

3 4

Max’s Turn

Min’s Turn

Max’s Turn

Min’s Turn

? ≥ X
? ≥ Y
? ≥ Z

X ≤ A
X ≤ B

Y ≤ C
Y ≤ D

Z ≤ E
Z ≤ F

A ≥ 30 B ≥ 50 C ≥ 2 D ≥ 25 E ≥ 1 F ≥ 3

The idea is that as we fill in these values, if we find one that contradicts a bound, we can stop looking in that
subtree. Before looking at the next page, try to figure out which leaves we don’t need to evaluate.

4



We evaluate 30, 40, and 50; then, we notice that X ≤ 40, but we hit a 50 which violates the condition. So, we
cut off the rest of that subtree.

?

X

40

30 40

B

50 20

Y

C

2 4

D

25 35

Z

E

1 2

F

3 4

Max’s Turn

Min’s Turn

Max’s Turn

Min’s Turn

? ≥ X
? ≥ Y
? ≥ Z

X ≤ 40
X ≤ B

Y ≤ C
Y ≤ D

Z ≤ E
Z ≤ F

A ≥ 30 B ≥ 50 C ≥ 2 D ≥ 25 E ≥ 1 F ≥ 3

We evaluate 2 then 4; then, we notice that min can force a 4 if we choose Y. So, we can cut off the rest of that
subtree.

?

40

40

30 40 50 20

Y

4

2 4

D

25 35

Z

E

1 2

F

3 4

Max’s Turn

Min’s Turn

Max’s Turn

Min’s Turn

? ≥ 40
? ≥ Y
? ≥ Z

X ≤ 40
X ≤ B

Y ≤ C
Y ≤ 4

Z ≤ E
Z ≤ F

A ≥ 30 B ≥ 50 C ≥ 2 D ≥ 25 E ≥ 1 F ≥ 3

Finally, we evaluate 1 and 2 and notice that that gives us a cutoff for the remaining subtree.

?

40

40

30 40 50 20

4

2 4

D

25 35

2

1 2

F

3 4

Max’s Turn

Min’s Turn

Max’s Turn

Min’s Turn

? ≥ 40
? ≥ Y
? ≥ Z

X ≤ 40
X ≤ B

Y ≤ C
Y ≤ 4

Z ≤ E
Z ≤ F

A ≥ 30 B ≥ 50 C ≥ 2 D ≥ 25 E ≥ 1 F ≥ 3

Notice, again, that, if we were to evaluate the whole tree (via minimax), we would get the same answer.
Furthermore, we are able to make these cutoffs both as the min player and the max player.
In code, a cleaner way of dealing with the inequalities is as a valid range. The Min player makes the upper bound
smaller and the Max player makes the lower bound bigger. Alpha-beta pruning gets its name from this idea: we
call the lower bound α and the upper bound β and we provide them as arguments. Whenever β ≤ α, we cut
off. Notice how nodes on max levels only propagate up β and nodes on min levels only propagate up α:

40

40

40

30 40 50 20

4

2 4

D

25 35

2

1 2

F

3 4

Max’s Turn

Min’s Turn

Max’s Turn

Min’s Turn

[−∞,∞]

[30,∞]

[40,∞]

[−∞, 40]

[50, 40]

[40,∞]

[40,∞]

[40,∞]

[40, 4]

[40,∞]

[40,∞]

[40,∞]

[40, 2]

β
=

40

α = 40

β
=

4

β
=

2

5



Finally, we can describe the actual algorithm.

The Algorithm
1 int alphabeta(Position p, int alpha, int beta) {
2 if (p is a leaf) {
3 return p.evaluate();
4 }
5
6 for (move in p.getMoves()) {
7 p.applyMove(move);
8 int value = −alphabeta(p, −beta, −alpha);
9 p.undoMove();

10
11 // If value is between alpha and beta, we've
12 // found a new lower bound
13 if (value > alpha) {
14 alpha = value;
15 }
16
17 // If the value is bigger than beta, we won't
18 // actually be able to get this move
19 if (alpha >= beta) {
20 return alpha;
21 }
22 }
23
24 // Return the best achievable value
25 return alpha;
26 }

Again, we’re using the special properties of min and max to make the code cleaner. This time, when we switch
from min to max, we swap the upper and lower bounds as well. It’s also important to notice that the “best move
value” is alpha; we’re not keeping track of another value in addition to alpha. We strongly recommend running
through the algorithm on your own in the above tree before attempting to code it up. Alphabeta is deceptively
complicated!

Move Ordering
Because alphabeta attempts to prune as many nodes as possible based on which nodes it evaluates, the order
that you visit the moves in matters substantially. The assignment does not require that you do any interesting
move ordering, but in both alphabeta and jamboree (see next section), if you apply move ordering, your
performance will be substantially better.

Parallel Alpha-Beta Pruning
After you have alphabeta working, you will write a parallel version. Unfortunately, unlike minimax, alphabeta
is not “naturally parallelizable”. In particular, if we attempt to parallelize the loop, we will be unable to propogate
the new alpha and beta values to each iteration. This would result in us evaluating unnecessary parts of the
tree. In practice, however, it turns out that that this is an acceptable loss, because the parallelism still gives us
an overall benefit. So, our general strategy (a variant of an algorithm called Jamboree) is the following.

• Evaluate x of the moves sequentially to get reasonable alpha/beta values that will enable us to cut out
large parts of the tree.

• Evaluate the remaining moves in parallel. This means we will evaluate some unnecessary moves, but, in
practice, it’s worth it.

Then, the algorithm looks something like the following:

6



The Algorithm
1 PERCENTAGE_SEQUENTIAL = 0.5;
2 int jamboree(Position p, int alpha, int beta) {
3 if (p is a leaf) {
4 return p.evaluate();
5 }
6
7 moves = p.getMoves();
8
9 for (i = 0; i < PERCENTAGE_SEQUENTIAL * moves.length; i++) {

10 p.applyMove(moves[i]);
11 int value = −jamboree(p, −beta, −alpha);
12 p.undoMove();
13
14 if (value > alpha) {
15 alpha = value;
16 }
17 if (alpha >= beta) {
18 return alpha;
19 }
20 }
21
22 parallel (i = PERCENTAGE_SEQUENTIAL * moves.length; i < moves.length; i++) {
23 p = p.copy();
24 int value = −jamboree(p, −beta, −alpha);
25
26 if (value > alpha) {
27 alpha = value;
28 }
29 if (alpha >= beta) {
30 return alpha;
31 }
32 }
33
34 return alpha;
35 }

This algorithm has a lot of important constants to tweak which make a big difference:

• PERCENTAGE_SEQUENTIAL can make a big difference. You should play with the value until you find a good
one.

• There will also be a sequential cutoff like normal which is not the same as PERCENTAGE_SEQUENTIAL.

• As with all the other algorithms, you will need to choose a depth to go to. This algorithm should get
further than any of the others.

• Make sure that your sequential cut-off does not recursively call the parallel version. If you accidentally do
that, performance will degrade substantially.

• As with the other parallel algorithm, it is important to figure out when you should copy the board vs. just
undoing the move.

7


