Announcements

• No class on Monday
Union Find Review

• Data: set of pairwise disjoint sets.
• Operations
 – Union – merge two sets to create their union
 – Find – determine which set an item appears in
• Amortized complexity
 – M Union and Find operations, on a set of size N
 – Runtime O(M log* N)
Spanning Tree in a Graph

- Connects all the vertices
- No cycles
Undirected Graph

- $G = (V,E)$
 - V is a set of vertices (or nodes)
 - E is a set of unordered pairs of vertices

$V = \{1,2,3,4,5,6,7\}$
$E = \{(1,2),(1,6),(1,5),(2,7),(2,3), (3,4),(4,7),(4,5),(5,6)\}$

2 and 3 are adjacent
2 is incident to edge (2,3)
Spanning Tree Problem

• Input: An undirected graph $G = (V,E)$. G is connected.

• Output: $T \subseteq E$ such that
 – (V,T) is a connected graph
 – (V,T) has no cycles
Spanning Tree Algorithm

ST(Vertex i) {
 mark i;
 for each j adjacent to i {
 if (j is unmarked) {
 Add (i,j) to T;
 ST(j);
 }
 }
}

Main() {
 T = empty set;
 ST(1);
}
Finding a reliable routing subnetwork:

- edge cost = probability that it won’t fail
- Find the spanning tree that is least likely to fail
Example of a Spanning Tree

Probability of success = $0.85 \times 0.95 \times 0.89 \times 0.95 \times 1.0 \times 0.84$

$= 0.5735$
Minimum Spanning Trees

Given an undirected graph $G=(V,E)$, find a graph $G'=(V,E')$ such that:

- E' is a subset of E
- $|E'| = |V| - 1$
- G' is connected
- $\sum_{(u,v)\in E'} c_{uv}$ is minimal

G' is a minimum spanning tree.
Minimum Spanning Tree Problem

• Input: Undirected Graph $G = (V,E)$ and $C(e)$ is the cost of edge e.

• Output: A spanning tree T with minimum total cost. That is: T that minimizes

$$C(T) = \sum_{e \in T} C(e)$$
Kruskal’s MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.

G=(V,E)
Kruskal’s Algorithm for MST

An *edge-based* greedy algorithm
Builds MST by greedily adding edges

1. Initialize with
 - empty MST
 - all vertices marked unconnected
 - all edges unmarked

2. While there are still unmarked edges
 a. Pick the lowest cost edge \((u, v)\) and mark it
 b. If \(u\) and \(v\) are not already connected, add \((u, v)\) to the MST and mark \(u\) and \(v\) as connected to each other

Sound familiar?
Example of for Kruskal

(7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5)
0 1 1 2 2 3 3 3 3 4
Data Structures for Kruskal

- Sorted edge list

(7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>3</th>
<th>3</th>
<th>3</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
</table>

- Disjoint Union / Find
 - Union(a,b) - merge the disjoint sets named by a and b
 - Find(a) returns the name of the set containing a
Example of DU/F

(7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5)

0 1 1 2 2 3 3 3 3 4
Kruskal’s Algorithm

- Add the cheapest edge that joins disjoint components
Kruskal’s Algorithm with DU / F

Sort the edges by increasing cost; Initialize A to be empty; for each edge (i,j) chosen in increasing order do
 u := Find(i);
 v := Find(j);
 if not(u = v) then
 add (i,j) to A;
 Union(u,v);

This algorithm will work, but it goes through all the edges.

Is this always necessary?
void Graph::kruskal()
{
 int edgesAccepted = 0;
 DisjSet s(NUM_VERTICES);

 while (edgesAccepted < NUM_VERTICES - 1)
 {
 e = smallest weight edge not deleted yet;
 // edge e = (u, v)
 uset = s.find(u);
 vset = s.find(v);
 if (uset != vset)
 {
 edgesAccepted++;
 s.unionSets(uset, vset);
 }
 }
}

Total Cost:
Kruskal’s Algorithm: Correctness

It clearly generates a spanning tree. Call it T_K.

Suppose T_K is not minimum:

Pick another spanning tree T_{min} with lower cost than T_K

Pick the smallest edge $e_1 = (u, v)$ in T_K that is not in T_{min}

T_{min} already has a path p in T_{min} from u to v

\implies Adding e_1 to T_{min} will create a cycle in T_{min}

Pick an edge e_2 in p that Kruskal’s algorithm considered after adding e_1 (must exist: u and v unconnected when e_1 considered)

\implies cost(e_2) \geq cost(e_1)

\implies can replace e_2 with e_1 in T_{min} without increasing cost!

Keep doing this until T_{min} is identical to T_K

\implies T_K must also be minimal – contradiction!
MST Application: Clustering

• Given a collection of points in an r-dimensional space, and an integer K, divide the points into K sets that are closest together.
Distance clustering

• Divide the data set into K subsets to maximize the distance between any pair of sets

 $\text{dist} (S_1, S_2) = \min \{ \text{dist}(x, y) \mid x \in S_1, y \in S_2 \}$
Divide into 2 clusters
Divide into 3 clusters
Divide into 4 clusters
Distance Clustering Algorithm

Let $C = \{\{v_1\}, \{v_2\}, \ldots, \{v_n\}\}; \ T = \{ \}$

while $|C| > K$

Let $e = (u, v)$ with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C

Replace C_i and C_j by $C_i \cup C_j$
K-clustering