CSE 332: Data Abstractions
Union/Find II

Richard Anderson
Spring 2016

Announcements
• Reading for this lecture: Chapter 8.
• Friday’s topic, Minimum Spanning Trees
• Wednesday / Thursday, NP Completeness

Disjoint Set ADT
• Data: set of pairwise disjoint sets.
• Required operations
 – Union – merge two sets to create their union
 – Find – determine which set an item appears in

Disjoint Sets and Naming
• Maintain a set of pairwise disjoint sets.
 – {3,5,7}, {4,2,8}, {9}, {1,6}
• Each set has a unique name: one of its members (for convenience)
 – {3,5,7}, {4,2,8}, {9}, {1,6}

Union / Find
• Union(x,y) – take the union of two sets named x and y
 – {3,5,7}, {4,2,8}, {9}, {1,6}
 – Union(5,1)
 – {3,5,7,1,6}, {4,2,8}, {9},
• Find(x) – return the name of the set containing x.
 – {3,5,7,1,6}, {4,2,8}, {9},
 – Find(1) = 5
 – Find(4) = 8

Union/Find Trade-off
• Known result:
 – Find and Union cannot both be done in worst-case $O(1)$ time with any data structure.
• We will instead aim for good amortized complexity.
• For m operations on n elements:
 – Target complexity: $O(m)$ i.e. $O(1)$ amortized
Up-Tree for DS Union/Find

Observation: we will only traverse these trees upward from any given node to find the root.

Idea: reverse the pointers (make them point up from child to parent). The result is an **up-tree**.

Initial state

Roots are the names of each set.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>up</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Intermediate state

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>up</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Operations

Find(x) follow x to the root and return the root.

Union(i, j) - assuming i and j roots, point j to i.

Simple Implementation

- **Array of indices**

 up[x] = -1 means x is a root.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>up</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

A Bad Case

Union(1, 2)

Union(2, 3)

Union(n, n-1)

Find(1) n steps!!

Amortized Cost

- Cost of n Union operations followed by n Find operations is \(n^2\)
- \(\Theta(n)\) per operation

Two Big Improvements

Can we do better? Yes!

1. **Union-by-size**
 - Improve Union so that *Find* only takes worst case time of \(\Theta(\log n)\).

2. **Path compression**
 - Improve *Find* so that, with Union-by-size, *Find* takes amortized time of almost \(\Theta(1)\).
Union-by-Size

- Always point the smaller tree to the root of the larger tree

S-Union(7,1)

Analysis of Union-by-Size

• Theorem: With union-by-size an up-tree of height h has size at least 2^h.

• Proof by induction
 - Base case: $h = 0$. The up-tree has one node, $2^0 = 1$
 - Inductive hypothesis: Assume true for $h-1$
 - Observation: tree gets taller only as a result of a union.

Analysis of Union-by-Size

• What is worst case complexity of Find(x) in an up-tree forest of n nodes?

 • (Amortized complexity is no better.)

Worst Case for Union-by-Size

- $n/2$ Unions-by-size
- $n/4$ Unions-by-size

Example of Worst Cast (cont’)

After $n - 1 = n/2 + n/4 + \ldots + 1$ Unions-by-size

If there are $n = 2^k$ nodes then the longest path from leaf to root has length k.
Array Implementation

Can store separate size array:

```
1 2 3 4 5 6 7
up  -1  1  -7  7  5  -1
size  2  1  3  4  5  6  7
```

Elegant Array Implementation

Better, store sizes in the up array:

```
1 2 3 4 5 6 7
up  2 1  -1  7  7  5  -4
```
Negative up-values correspond to sizes of roots.

Code for Union-by-Size

```
S-Union(i,j){
    // Collect sizes
    si = -up[i];
    sj = -up[j];
    // verify i and j are roots
    assert(si >=0 && sj >=0)
    // point smaller sized tree to
    // root of larger, update size
    if (si < sj) {
        up[i] = j;
        up[j] = -(si + sj);
    } else {
        up[j] = i;
        up[i] = -(si + sj);
    }
}
```

Path Compression

- To improve the amortized complexity, we’ll borrow an idea from splay trees:
 - When going up the tree, improve nodes on the path!
- On a Find operation point all the nodes on the search path directly to the root. This is called “path compression.”

Self-Adjustment Works

Draw the result of Find(5):
Code for Path Compression Find

```c
PC-Find(i) {
    // find root
    j = i;
    while (up[j] >= 0) {
        j = up[j];
        root = j;
    }
    // compress path
    if (i != root) {
        parent = up[i];
        while (parent != root) {
            up[i] = root;
            i = parent;
            parent = up[parent];
        }
    }
    return(root)
}
```

Complexity of Union-by-Size + Path Compression

- Worst case time complexity for...
 - ...a single Union-by-size is:
 - ...a single PC-Find is:

- Time complexity for $m \geq n$ operations on n elements has been shown to be $O(m \log^* n)$. [See Weiss for proof.]
- Amortized complexity is then $O(\log^* n)$
- What is \log^*?

$\log^* n$

- $\log^* n$ = number of times you need to apply log to bring value down to at most 1
- $\log^* 2 = 1$
- $\log^* 4 = \log^* 2^2 = 2$
- $\log^* 16 = \log^* 2^{2^2} = 3$ (log log log 16 = 1)
- $\log^* 65536 = \log^* 2^{2^{2^2}} = 4$ (log log log log 65536 = 1)
- $\log^* 2^{65536} = \ldots \ldots \ldots \approx \log^* (2 \times 10^{19,728}) = 5$

- $\log^* n \leq 5$ for all reasonable n.

The Tight Bound

In fact, Tarjan showed the time complexity for $m \geq n$ operations on n elements is:

$$\Theta(m \alpha(m, n))$$

Amortized complexity is then $\Theta(\alpha(m, n))$.

- What is $\alpha(m, n)$?
 - Inverse of Ackermann’s function.
 - For reasonable values of m, n, grows even slower than $\log^* n$. So, it’s even “more constant.”

Proof is beyond scope of this class. A simple algorithm can lead to incredibly hardcore analysis!