Dijkstra’s Algorithm

$S = \{\}; \ d[s] = 0; \ d[v] = \text{infinity for } v \neq s$

While $S \neq V$

Choose v in $V - S$ with minimum $d[v]$

Add v to S

For each w in the neighborhood of v

$d[w] = \min(d[w], d[v] + c(v, w))$

Assume all edges have non-negative cost

Simulate Dijkstra’s algorithm (starting from s) on the graph

Why do we worry about negative cost edges??

Edsger Wybe Dijkstra was one of the most influential members of computing science’s founding generation. Among the domains in which his scientific contributions are fundamental are

- algorithm design
- programming languages
- program design
- operating systems
- distributed processing
- formal specification and verification
- design of mathematical arguments
Graph Algorithms / Data Structures

• Dijkstra’s Algorithm for Shortest Paths
 – Heaps, $O(m \log n)$ runtime
• Kruskal’s Algorithm for Minimum Spanning Tree
 – Union-Find data structure

Making Connections

You have a set of nodes (numbered 1-9) on a network. You are given a sequence of pairwise connections between them:

3-5
4-2
1-6
5-7
4-8
3-7

Q: Are nodes 2 and 4 (indirectly) connected?
Q: How about nodes 3 and 8?
Q: Are any of the paired connections redundant due to indirect connections?
Q: How many sub-networks do you have?

Applications of Disjoint Sets

Maintaining disjoint sets in this manner arises in a number of areas, including:

– Networks
– Transistor interconnects
– Compilers
– Image segmentation
– Building mazes (this lecture)
– Graph problems
 • Minimum Spanning Trees (upcoming topic in this class)

Disjoint Set ADT

• Data: set of pairwise disjoint sets.
• Required operations
 – **Union** – merge two sets to create their union
 – **Find** – determine which set an item appears in
• A common operation sequence:
 – Connect two elements if not already connected:
 if (Find(x) != Find(y)) then Union(x,y)

Disjoint Sets and Naming

• Maintain a set of pairwise disjoint sets.
 – \{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}
• Each set has a unique name: one of its members (for convenience)
 – \{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}
Union
- Union(x, y) – take the union of two sets named x and y
 - \{3, 5, 7\}, \{4, 2, 8\}, \{9\}, \{1, 6\}
 - Union(5, 1)
 - \{3, 5, 7, 1, 6\}, \{4, 2, 8\}, \{9\},

Find
- Find(x) – return the name of the set containing x.
 - \{3, 5, 7, 1, 6\}, \{4, 2, 8\}, \{9\},
 - Find(1) = 5
 - Find(4) = 8

Example
- \{1, 2, 7, 8, 9, 13, 19\}
- \{3\}
- \{4\}
- \{5\}
- \{6\}
- \{10\}
- \{11, 17\}
- \{12\}
- \{14, 20, 26, 27\}
- \{15, 16, 21\}
- \{22, 23, 24, 29, 39, 32\}
- \{33, 34, 35, 36\}
- \{22, 23, 24, 29, 39, 32\}
- \{33, 34, 35, 36\}

Nifty Application: Building Mazes
Idea: Build a random maze by erasing walls.

Building Mazes
- Pick Start and End

- Repeatedly pick random walls to delete.
Desired Properties

• None of the boundary is deleted (except at “start” and “end”).

• Every cell is reachable from every other cell.

• There are no cycles – no cell can reach itself by a path unless it retraces some part of the path.

A Cycle

A Good Solution

A Hidden Tree

Number the Cells

We start with disjoint sets $S = \{ \{1\}, \{2\}, \{3\}, \{4\}, \ldots, \{36\} \}$. We have all possible walls between neighbors $W = \{(1,2), (1,7), (2,8), (2,3), \ldots \}$ 60 walls total.

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
| 31 | 32| 33| 34| 35| 36| End

Idea: Union-find operations will be done on cells.

Maze Building with Disjoint Union/Find

Algorithm sketch:
1. Choose wall at random.
 → *Boundary walls are not in wall list, so left alone*
2. Erase wall if the neighbors are in disjoint sets.
 → *Avoids cycles*
3. Take union of those sets.
4. Go to 1, iterate until there is only one set.
 → *Every cell reachable from every other cell*.
Pseudocode

- S = set of sets of connected cells
- W = set of walls
- Maze = set of walls in maze (initially empty)

While there is more than one set in S
- Pick a random non-boundary wall (x,y) and remove from W
- u = Find(x);
- v = Find(y);
- if u ≠ v then
 Union(u,v)
- else
 Add wall (x,y) to Maze
- Add remaining members of W to Maze

Example

S = {1,2,3,4,5,6,7,...,36}

Remaining walls in W
Previously added to Maze

Data structure for disjoint sets?
- Represent: {3,5,7}, {4,2,8}, {9}, {1,6}
- Support: find(x), union(x,y)
Union/Find Trade-off

- Known result:
 - Find and Union cannot both be done in worst-case $O(1)$ time with any data structure.
- We will instead aim for good amortized complexity.
- For m operations on n elements:
 - Target complexity: $O(m)$ i.e. $O(1)$ amortized

Tree-based Approach

Each set is a tree
- Root of each tree is the set name.

- Allow large fanout (why?)

Up-Tree for DS Union/Find

Observation: we will only traverse these trees upward from any given node to find the root.

Idea: reverse the pointers (make them point up from child to parent). The result is an up-tree.

Initial state

```
1 2 3 4 5 6 7
```

Intermediate state

```
1 2 3 5 4 6 7
```

Roots are the names of each set.

Find Operation

Find(x) follow x to the root and return the root.

```
1   2   3
    4   5
       6   7
```

Simple Implementation

- Array of indices

```
up 1 2 3 4 5 6 7
```

$up[x] = -1$ means x is a root.
Implementation

```c
void Union(int x, int y) {
    assert(up[x] < 0 && up[y] < 0);
    up[x] = y;
}
```

```c
int Find(int x) {
    while(up[x] >= 0) {
        x = up[x];
    }
    return x;
}
```

runtime for Union: runtime for Find:

Amortized complexity is no better.

A Bad Case

Two Big Improvements

Can we do better? Yes!

1. **Union-by-size**
 - Improve Union so that Find only takes worst case time of $\Theta(\log n)$.

2. **Path compression**
 - Improve Find so that, with Union-by-size, Find takes amortized time of almost $\Theta(1)$.

Union-by-Size

- Always point the smaller tree to the root of the larger tree

```
S-Union(7,1)
```

Example Again
Analysis of Union-by-Size

• Theorem: With union-by-size an up-tree of height \(h \) has size at least \(2^h \).
• Proof by induction
 – Base case: \(h = 0 \). The up-tree has one node, \(2^0 = 1 \)
 – Inductive hypothesis: Assume true for \(h-1 \)
 – Observation: tree gets taller only as a result of a union.

Proof:

\[
T = S\text{-Union}(T_1, T_2)
\]

\[
\log n
\]

Example of Worst Cast (cont’)

After \(n - 1 = n/2 + n/4 + \ldots + 1 \) Unions-by-size

If there are \(n = 2^k \) nodes then the longest path from leaf to root has length \(k \).

Array Implementation

Can store separate size array:

<table>
<thead>
<tr>
<th>up</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>-1</td>
<td>3</td>
</tr>
<tr>
<td>-1</td>
<td>4</td>
</tr>
<tr>
<td>-1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>-1</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>up</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>-1</td>
<td>5</td>
</tr>
<tr>
<td>-1</td>
<td>6</td>
</tr>
<tr>
<td>-1</td>
<td>7</td>
</tr>
</tbody>
</table>

Better, store sizes in the up array:

<table>
<thead>
<tr>
<th>up</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

Negative up-values correspond to sizes of roots.
Code for Union-by-Size

```c
S-Union(i, j) {
    // Collect sizes
    si = up[i];
    sj = up[j];

    // verify i and j are roots
    assert(si >= 0 && sj >= 0)

    // point smaller sized tree to
    // root of larger, update size
    if (si < sj) {
        up[i] = j;
        up[j] = -(si + sj);
    }
    else {
        up[j] = i;
        up[i] = -(si + sj);
    }
}
```

Path Compression

- To improve the amortized complexity, we’ll borrow an idea from splay trees:
 - When going up the tree, improve nodes on the path!
- On a Find operation point all the nodes on the search path directly to the root. This is called “path compression.”

Draw the result of Find(5):

Self-Adjustment Works

- To improve the amortized complexity, we’ll borrow an idea from splay trees:
 - When going up the tree, improve nodes on the path!

Code for Path Compression Find

```c
PC-Find(i) {
    //find root
    j = i;
    while (up[j] >= 0) {
        j = up[j];
        root = j;
    }
    //compress path
    if (i != root) {
        parent = up[i];
        while (parent != root) {
            up[i] = root;
            i = parent;
            parent = up[parent];
        }
    }
    return(root)
}
```

Complexity of Union-by-Size + Path Compression

- Worst case time complexity for...
 - ...a single Union-by-size is:
 - ...a single PC-Find is:

- Time complexity for \(m \geq n \) operations on \(n \) elements has been shown to be \(O(m \log^* n) \).
 [See Weiss for proof.]
- Amortized complexity is then \(O(\log^* n) \)
- What is \(\log^* \)?
logⁿ

logⁿ = number of times you need to apply log to bring value down to at most 1

log* 2 = 1
log* 4 = log* 2² = 2
log* 16 = log* 2⁴ = 3 (log log 16 = 1)
log* 65536 = log* 2⁵²⁴ = 4 (log log log 65536 = 1)
log* 2⁶⁵⁵³⁶ = = log* (2 x 10¹⁹,⁷²⁶) = 5

log* n ≤ 5 for all reasonable n.

The Tight Bound

In fact, Tarjan showed the time complexity for m ≥ n operations on n elements is:

\[\Theta(m \alpha(m, n)) \]

Amortized complexity is then \(\Theta(\alpha(m, n)) \).

What is \(\alpha(m, n) \)?

– Inverse of Ackermann’s function.
– For reasonable values of m, n, grows even slower than log* n. So, it’s even “more constant.”

Proof is beyond scope of this class. A simple algorithm can lead to incredibly hardcore analysis!