Announcements

Graphs

- A formalism for representing relationships between objects
 - Graph $G = (V, E)$
 - Set of vertices: $V = \{v_1, v_2, \ldots, v_n\}$
 - Set of edges: $E = \{e_1, e_2, \ldots, e_m\}$
 - where each e_i connects one vertex to another (v_j, v_k)

 - For directed edges, (v_j, v_k) and (v_k, v_j) are distinct.
 (More on this later…)

Paths and connectivity

The Shortest Path Problem

Given a graph G, and vertices s and t in G, find the shortest path from s to t.

Two cases: weighted and unweighted.

For a path $p = v_0, v_1, v_2, \ldots, v_k$

- unweighted length of path $p = k$ (a.k.a. length)
- weighted length of path $p = \sum_{i=0}^{k-1} c_{j,i+1}$ (a.k.a. cost)

Single Source Shortest Paths (SSSP)

Given a graph G and vertex s, find the shortest paths from s to all vertices in G.

- How much harder is this than finding single shortest path from s to t?
Variations of SSSP

- Weighted vs. unweighted
- Directed vs undirected
- Cyclic vs. acyclic
- Positive weights only vs. negative weights allowed
- Shortest path vs. longest path
- ...

Applications

- Network routing
- Driving directions
- Cheap flight tickets
- Critical paths in project management (see textbook)
- ...

SSSP: Unweighted Version

```cpp
void Graph::unweighted (Vertex s){
    Queue q(NUM_VERTICES);
    Vertex w, v;
    q.enqueue(s);
    s.dist = 0;
    while (!q.isEmpty()){
        v = q.dequeue();
        for each w adjacent to v
            if (w.dist == INFINITY){
                w.dist = v.dist + 1;
                w.prev = v;
                q.enqueue(w);
            }
    }
}
```

total running time: O()

Weighted SSSP:
All edges are not created equal

Can we calculate shortest distance to all vertices from Allen Center?
Dijkstra's Algorithm: Idea

Adapt BFS to handle weighted graphs

Two kinds of vertices:
- Known
 - shortest distance is already known
- Unknown
 - Have tentative distance

Dijkstra's Algorithm: Pseudocode

Initialize the cost of each node to ∞
Initialize the cost of the source to 0

While there are unknown vertices left in the graph
 Select an unknown vertex a with the lowest cost
 Mark a as known
 For each vertex b adjacent to a
 newcost = cost(a) + cost(a, b)
 if (newcost < cost(b))
 cost(b) = newcost
 previous(b) = a

Important Features

- Once a vertex is known, the cost of the shortest path to that vertex is known
- While a vertex is still unknown, another shorter path to it might still be found
- The shortest path can be found by following the previous pointers stored at each vertex

Dijkstra's Alg: Implementation

Initialize the cost of each vertex to ∞
Initialize the cost of the source to 0
While there are unknown vertices left in the graph
 Select the unknown vertex a with the lowest cost
 Mark a as known
 For each vertex b adjacent to a
 newcost = min(cost(b), cost(a) + cost(a, b))
 if newcost < cost(b)
 cost(b) = newcost
 previous(b) = a

What data structures should we use?

Running time?
Dijkstra's Algorithm: Summary

- Classic algorithm for solving SSSP in weighted graphs without negative weights
- A greedy algorithm (irrevocably makes decisions without considering future consequences)
- Why does it work?

Correctness: The Cloud Proof

The Known Cloud

Next shortest path from inside the known cloud

Better path to V? No!

Correctness: Inside the Cloud

Prove by induction on # of nodes in the cloud:
- Initial cloud is just the source with shortest path 0
- Assume: Everything inside the cloud has the correct shortest path
- Inductive step: by argument on previous slide, we can safely add min-cost vertex to cloud

When does Dijkstra's algorithm not work?

Negative Weights?

How does Dijkstra's decide which vertex to add to the Known set next?
- If path to V is shortest, path to W must be at least as long (or else we would have picked W as the next vertex)
- So the path through W to V cannot be any shorter!

Dijkstra for BFS

- You can use Dijkstra's algorithm for BFS
- Is this a good idea?