CSE 322: Shortest Paths

Richard Anderson
Spring 2016
Announcements

•
Graphs

- A formalism for representing relationships between objects

- **Graph** \(G = (V, E) \)

- **Set of vertices**:
 \[V = \{ v_1, v_2, \ldots, v_n \} \]

- **Set of edges**:
 \[E = \{ e_1, e_2, \ldots, e_m \} \]
 where each \(e_i \) connects one vertex to another \((v_j, v_k) \)

- For *directed edges*, \((v_j, v_k) \) and \((v_k, v_j) \) are distinct.
 (More on this later…)

\[V = \{ A, B, C, D \} \]
\[E = \{ (C, B), (A, B), (B, A), (C, D) \} \]
Paths and connectivity
The Shortest Path Problem

Given a graph G, and vertices s and t in G, find the shortest path from s to t.

Two cases: weighted and unweighted.

For a path $p = v_0 \; v_1 \; v_2 \; \ldots \; v_k$

- **unweighted length** of path $p = k$ (a.k.a. *length*)

- **weighted length** of path $p = \sum_{i=0..k-1} c_{i,i+1}$ (a.k.a. *cost*)
Single Source Shortest Paths (SSSP)

Given a graph G and vertex s, find the shortest paths from s to all vertices in G.

– How much harder is this than finding single shortest path from s to t?
Variations of SSSP

– Weighted vs. unweighted
– Directed vs undirected
– Cyclic vs. acyclic
– Positive weights only vs. negative weights allowed
– Shortest path vs. longest path
– …
Applications

– Network routing
– Driving directions
– Cheap flight tickets
– Critical paths in project management (see textbook)
– …
SSSP: Unweighted Version
void Graph::unweighted (Vertex s) {
 Queue q(NUM_VERTICES);
 Vertex v, w;
 q.enqueue(s);
 s.dist = 0;

 while (!q.isEmpty()) {
 v = q.dequeue();
 for each w adjacent to v
 if (w.dist == INFINITY) {
 w.dist = v.dist + 1;
 w.prev = v;
 q.enqueue(w);
 }
 }
}

each edge examined at most once – if adjacency lists are used

each vertex enqueued at most once

total running time: O()
Weighted SSSP: All edges are not created equal

Can we calculate shortest distance to all vertices from Allen Center?
Dijkstra’s Algorithm: Idea

Adapt BFS to handle weighted graphs

Two kinds of vertices:
- **Known**
 - shortest distance is already known
- **Unknown**
 - Have tentative distance
Dijkstra’s Algorithm: Idea

At each step:
1) Pick closest unknown vertex
2) Add it to known vertices
3) Update distances
Dijkstra’s Algorithm: Pseudocode

Initialize the cost of each node to ∞
Initialize the cost of the source to 0

While there are unknown vertices left in the graph
 Select an unknown vertex a with the lowest cost
 Mark a as known
 For each vertex b adjacent to a
 newcost = cost(a) + cost(a,b)
 if (newcost < cost(b))
 cost(b) = newcost
 previous(b) = a
Important Features

- Once a vertex is *known*, the cost of the shortest path to that vertex is known
- While a vertex is still *unknown*, another shorter path to it might still be found
- The shortest path can be found by following the previous pointers stored at each vertex
<table>
<thead>
<tr>
<th>V</th>
<th>Known?</th>
<th>Cost</th>
<th>Previous</th>
</tr>
</thead>
<tbody>
<tr>
<td>v0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dijkstra’s Alg: Implementation

1. Initialize the cost of each vertex to ∞
2. Initialize the cost of the source to 0

While there are unknown vertices left in the graph:

1. Select the unknown vertex a with the lowest cost
2. Mark a as known
3. For each vertex b adjacent to a

 newcost = min(cost(b), cost(a) + cost(a, b))

 if newcost < cost(b)

 cost(b) = newcost

 previous(b) = a

What data structures should we use?

Running time?
Dijkstra’s Algorithm: Summary

• Classic algorithm for solving SSSP in weighted graphs without negative weights

• A greedy algorithm (irrevocably makes decisions without considering future consequences)

• Why does it work?
Correctness: The Cloud Proof

How does Dijkstra’s decide which vertex to add to the Known set next?

- If path to \(V \) is shortest, path to \(W \) must be \textit{at least as long}.
 \(\text{or else we would have picked} \ W \text{ as the next vertex} \)
- So the path through \(W \) to \(V \) cannot be any shorter!
Correctness: Inside the Cloud

Prove by induction on # of nodes in the cloud:
Initial cloud is just the source with shortest path 0

Assume: Everything inside the cloud has the correct shortest path

Inductive step: by argument on previous slide, we can safely add min-cost vertex to cloud

When does Dijkstra’s algorithm not work?
How does Dijkstra’s decide which vertex to add to the Known set next?

- If path to \(v \) is shortest, path to \(w \) must be \textit{at least as long}
 (or else we would have picked \(w \) as the next vertex)
- So the path through \(w \) to \(v \) cannot be any shorter!
Dijkstra for BFS

• You can use Dijkstra’s algorithm for BFS

• Is this a good idea?