Trees as Graphs

A tree is a graph that is:
- undirected
- acyclic
- connected

Hey, that doesn’t look like a tree!

Rooted Trees

We are more accustomed to:
- Rooted trees (a tree node that is “special”)
- Directed edges from parents to children (parent closer to root).

A rooted tree (root indicated in red)
drawn two ways

Rooted tree with directed edges from parents to children.

Characteristics of this one?

Directed Acyclic Graphs (DAGs)

DAGs are directed graphs with no (directed) cycles.

Aside: If program call-graph is a DAG, then all procedure calls can be in-lined

What’s the data structure?

- Common query: which edges are adjacent to a vertex

|E| and |V|

How many edges |E| in a graph with |V| vertices?

What if the graph is directed?

What if it is undirected and connected?

Can the following bounds be simplified?
- Arbitrary graph: O(|E| + |V|)
- Arbitrary graph: O(|E| + |V|^2)
- Undirected, connected: O(|E| log|V| + |V| log|V|)

Some (semi-standard) terminology:
- A graph is sparse if it has O(|V|) edges (upper bound).
- A graph is dense if it has Θ(|V|^2) edges.

CSE 332: Graphs II

Paul Beame in lieu of Richard Anderson
Spring 2016
Representation 2: Adjacency List
A list (array) of length $|V|$ in which each entry stores a list (linked list) of all adjacent vertices.

Runtimes:
- Iterate over vertices?
- Iterate over edges?
- Iterate edges adj. to vertex?
- Existence of edge?

Space requirements?
Best for what kinds of graphs?

Representation 1: Adjacency Matrix
A $|V| \times |V|$ matrix M in which an element $M[u,v]$ is true if and only if there is an edge from u to v.

Runtimes:
- Iterate over vertices?
- Iterate over edges?
- Iterate edges adj. to vertex?
- Existence of edge?

Space requirements?
Best for what kinds of graphs?

Representing Undirected Graphs
What do these reps look like for an undirected graph?

Adjacency matrix:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjacency list:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Some Applications: Bus Routes in Downtown Seattle
If we're at 3rd and Pine, how can we get to 1st and University using Metro?
How about 4th and Seneca?

Application: Topological Sort
Given a graph, $G = (V,E)$, output all the vertices in V sorted so that no vertex is output before any other vertex with an edge to it.

Topological Sort: Take One
1. Label each vertex with its in-degree (# inbound edges)
2. While there are vertices remaining:
 a. Choose a vertex v of in-degree zero; output v
 b. Reduce the in-degree of all vertices adjacent to v
 c. Remove v from the list of vertices

What kind of input graph is allowed?
Is the output unique?
void Graph::topsort()
{
 Vertex v, w;
 labelEachVertexWithItsInDegree();
 for (int counter=0; counter < NUM_VERTICES; counter++){
 v = findNewVertexOfDegreeZero();
 v.topologicalNum = counter;
 for each w adjacent to v
 w.indegree--;
 }
}

Find a topological order for the following graph

If a graph has a cycle, there is no topological sort
Consider the first vertex on the cycle in the topological sort
It must have an incoming edge
Lemma: If a graph is acyclic, it has a vertex with in degree 0

Proof:
Pick a vertex v_1, if it has in-degree 0 then done
If not, let (v_2, v_1) be an edge, if v_2 has in-degree 0 then done
If not, let (v_3, v_2) be an edge . . .
If this process continues for more than n steps, we have a repeated vertex, so we have a cycle