CSE 332: Parallel Sorting

Richard Anderson
Spring 2016
Announcements
Recap

Last lectures
- simple parallel programs
- common patterns: map, reduce
- analysis tools (work, span, parallelism)

Now
- Amdahl’s Law
- Parallel quicksort, merge sort
- useful building blocks: prefix, pack
Analyzing Parallel Programs

Let T_P be the running time on P processors

Two key measures of run-time:

- **Work**: How long it would take 1 processor = T_1
- **Span**: How long it would take infinity processors = T_∞
 - The hypothetical ideal for parallelization
 - This is the longest “dependence chain” in the computation
 - Example: $O(\log n)$ for summing an array
 - Also called “critical path length” or “computational depth”
Divide and Conquer Algorithms

Our **fork** and **join** frequently look like this:

In this context, the span \(T_\infty \) is:
- The longest dependence-chain; longest ‘branch’ in parallel ‘tree’
- Example: \(O(\log n) \) for summing an array; we halve the data down to our cut-off, then add back together; \(O(\log n) \) steps, \(O(1) \) time for each
- Also called “critical path length” or “computational depth”
Parallel Speed-up

- Speed-up on P processors: T_1 / T_P

- If speed-up is P, we call it perfect linear speed-up
 - e.g., doubling P halves running time
 - hard to achieve in practice

- Parallelism is the maximum possible speed-up: T_1 / T_∞
 - if you had infinite processors
Estimating T_p

- How to estimate T_p (e.g., $P = 4$)?

- Lower bounds on T_p (ignoring memory, caching...)
 1. T_∞
 2. T_1 / P
 - which one is the tighter (higher) lower bound?

- The ForkJoin Java Framework achieves the following expected time asymptotic bound:
 $$T_p \in O(T_\infty + T_1 / P)$$
 - this bound is optimal
Amdahl’s Law

• Most programs have
 1. parts that parallelize well
 2. parts that don’t parallelize at all

• The latter become bottlenecks
Amdahl’s Law

- Let $T_1 = 1$ unit of time
- Let $S = \text{proportion that can’t be parallelized}$
- $1 = T_1 = S + (1 - S)$
- Suppose we get perfect linear speedup on the parallel portion:
 $T_P = $
- So the overall speed-up on P processors is (Amdahl’s Law):
 $T_1 / T_P =$
 $T_1 / T_\infty =$
- If 1/3 of your program is parallelizable, max speedup is:
Pretty Bad News

• Suppose 25% of your program is sequential.
 – Then a billion processors won’t give you more than a 4x speedup!

• What portion of your program must be parallelizable to get 10x speedup on a 1000 core GPU?
 – \(10 \leq 1 / \left(S + (1-S)/1000 \right) \)

• Motivates minimizing sequential portions of your programs
Take Aways

• Parallel algorithms can be a big win
• Many fit standard patterns that are easy to implement
• Can’t just rely on more processors to make things faster (Amdahl’s Law)
Parallelizable?

Fibonacci (N)
Parallelizable?

Prefix-sum:

<table>
<thead>
<tr>
<th>input</th>
<th>6</th>
<th>3</th>
<th>11</th>
<th>10</th>
<th>8</th>
<th>2</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$output[i] = \sum_{0}^{i-1} input[i]$
First Pass: Sum

Sum \([0,7]::

\[
\begin{array}{cccccccc}
6 & 3 & 11 & 10 & 8 & 2 & 7 & 8
\end{array}
\]
First Pass: Sum

- Sum [0,7]:
 - Sum [0,3]:
 - Sum [0,1]: 6
 - Sum [2,3]: 11
 - Sum [4,7]:
 - Sum [4,5]: 10
 - Sum [5,7]: 8
2nd Pass: Use Sum for Prefix-Sum

Sum [0,7]:
 Sum<0:

 Sum [0,3]:
 Sum<0:

 Sum [2,3]:
 Sum<2:

 Sum [4,5]:
 Sum<4:

 Sum [6,7]:
 Sum<6:

6 3 11 10 8 2 7 8
2nd Pass: Use Sum for Prefix-Sum

Go from root down to leaves

Root
 - sum<0 =

Left-child
 - sum<K =

Right-child
 - sum<K =
Prefix-Sum Analysis

• First Pass (Sum):
 – $\text{span} =$

• Second Pass:
 – single pass from root down to leaves
 • update children’s sum$<K$ value based on parent and sibling
 – $\text{span} =$

• Total
 – $\text{span} =$
Parallel Prefix, Generalized

Prefix-sum is another common pattern (prefix problems)
 – maximum element to the left of \(i \)
 – is there an element to the left of \(i \) satisfying some property?
 – count of elements to the left of \(i \) satisfying some property
 – ...

We can solve all of these problems in the same way
Pack:

Input:

| 6 | 3 | 11 | 10 | 8 | 2 | 7 | 8 |

Test: $X < 8$?

Output:

Output array of elements satisfying test, in original order
Parallel Pack?

Pack

input

| 6 | 3 | 11 | 10 | 8 | 2 | 7 | 8 |

output

| 6 | 3 | 2 | 7 | | | | |

test: $X < 8$?

- Determining **which** elements to include is easy
- Determining **where** each element goes in output is hard
 - seems to depend on previous results
Parallel Pack

1. map test input, output [0,1] bit vector

<table>
<thead>
<tr>
<th>input</th>
<th>6</th>
<th>3</th>
<th>11</th>
<th>10</th>
<th>8</th>
<th>2</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>test</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Parallel Pack

1. map test input, output [0,1] bit vector

<table>
<thead>
<tr>
<th>input</th>
<th>6</th>
<th>3</th>
<th>11</th>
<th>10</th>
<th>8</th>
<th>2</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>test</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

test: $X < 8$?

2. transform bit vector into array of indices into result array

| pos | 1 | 2 | | | 3 | 4 | | |
Parallel Pack

1. map test input, output [0,1] bit vector

<table>
<thead>
<tr>
<th>input</th>
<th>6</th>
<th>3</th>
<th>11</th>
<th>10</th>
<th>8</th>
<th>2</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>test</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

2. prefix-sum on bit vector

| pos | 1 | 2 | 2 | 2 | 2 | 3 | 4 | 4 |

3. map input to corresponding positions in output

| output | 6 | 3 | 2 | 7 | | | | |

- if (test[i] == 1) output[pos[i]] = input[i]
Parallel Pack Analysis

• Parallel Pack
 1. map: \(O(\quad) \) span
 2. sum-prefix: \(O(\quad) \) span
 3. map: \(O(\quad) \) span

• Total: \(O(\quad) \) span
Sequential Quicksort

Quicksort (review):

1. Pick a pivot \(O(1) \)
2. Partition into two sub-arrays \(O(n) \)
 A. values less than pivot
 B. values greater than pivot
3. Recursively sort A and B \(2T(n/2), \text{ avg} \)

Complexity (avg case)

- \(T(n) = n + 2T(n/2) \)
 \(T(0) = T(1) = 1 \)
- \(O(n \log n) \)

How to parallelize?
Parallel Quicksort

Quicksort

1. Pick a pivot \(O(1) \)
2. Partition into two sub-arrays \(O(n) \)
 A. values less than pivot
 B. values greater than pivot
3. Recursively sort A and B in parallel \(T(n/2) \), avg

Complexity (avg case)

- \(T(n) = n + T(n/2) \) \(T(0) = T(1) = 1 \)
- Span: \(O() \)
- Parallelism (work/span) = \(O() \)
Taking it to the next level…

• $O(\log n)$ speed-up with infinite processors is okay, but a bit underwhelming
 – Sort 10^9 elements 30x faster

• Bottleneck:
Parallel Partition

Partition into sub-arrays

A. values less than pivot
B. values greater than pivot

What parallel operation can we use for this?
Parallel Partition

• Pick pivot

```
8 1 4 9 0 3 5 2 7 6
```

• Pack (test: <6)

```
1 4 0 3 5 2
```

• Right pack (test: >=6)

```
1 4 0 3 5 2 6 8 9 7
```
Parallel Quicksort

Quicksort

1. Pick a pivot \(O(1) \)
2. Partition into two sub-arrays \(O(\) \) span
 A. values less than pivot
 B. values greater than pivot
3. Recursively sort A and B in parallel \(T(n/2), \text{avg} \)

Complexity (avg case)

- \(T(n) = O(\) + T(n/2) \) \(T(0) = T(1) = 1 \)
- \(\text{Span: } O(\) \)
- \(\text{Parallelism (work/span) } = O(\) \)
Sequential Mergesort

Mergesort (review):
1. Sort left and right halves \(2T(n/2)\)
2. Merge results \(O(n)\)

Complexity (worst case)
- \(T(n) = n + 2T(n/2)\) \(T(0) = T(1) = 1\)
- \(O(n \log n)\)

How to parallelize?
- Do left + right in parallel, improves to \(O(n)\)
- To do better, we need to…
Parallel Merge

How to merge two sorted lists in parallel?
Parallel Merge

1. Choose median M of left half $O(\)$
2. Split both arrays into $< M$, $\geq M$ $O(\)$
 - how?
Parallel Merge

1. Choose median \(M \) of left half
2. Split both arrays into \(< M, \geq M\)
 - how?
3. Do two submerges in parallel
When we do each merge in parallel:

- we split the bigger array in half
- use binary search to split the smaller array
- And in base case we copy to the output array
Parallel Mergesort Pseudocode

Merge(arr[], left₁, left₂, right₁, right₂, out[], out₁, out₂)

 int leftSize = left₂ – left₁
 int rightSize = right₂ – right₁
 // Assert: out₂ – out₁ = leftSize + rightSize
 // We will assume leftSize > rightSize without loss of generality

 if (leftSize + rightSize < CUTOFF)
 sequential merge and copy into out[out₁..out₂]

 int mid = (left₂ – left₁)/2
 binarySearch arr[right₁..right₂] to find j such that
 arr[j] ≤ arr[mid] ≤ arr[j+1]

 Merge(arr[], left₁, mid, right₁, j, out[], out₁, out₁+mid+j)
 Merge(arr[], mid+1, left₂, j+1, right₂, out[], out₁+mid+j+1, out₂)
Analysis

Parallel Merge (worst case)
- Height of partition call tree with n elements: $O(\)$
- Complexity of each thread (ignoring recursive call): $O(\)$
- Span: $O(\)$

Parallel Mergesort (worst case)
- Span: $O(\)$
- Parallelism (work / span): $O(\)$

Subtlety: uneven splits
- but even in worst case, get a 3/4 to 1/4 split
 - still gives $O(\log n)$ height
Parallel Quicksort vs. Mergesort

Parallelism (work / span)

- quicksort: $O(n / \log n)$ avg case
- mergesort: $O(n / \log^2 n)$ worst case