Fork-Join Parallelism

1. Define thread
 - Java: define subclass of `java.lang.Thread`, override `run`

2. Fork: instantiate a thread and start executing
 - Java: create thread object, call `start()`

3. Join: wait for thread to terminate
 - Java: call `join()` method, which returns when thread finishes

Above uses basic thread library build into Java.
Later we’ll introduce a better ForkJoin Java library designed for parallel programming.

Part 1: define thread class

```java
class SumThread extends java.lang.Thread {
    int lo; // fields, passed to constructor
    int hi; // so threads know what to do.
    int[] arr;
    int ans = 0; // result
    SumThread(int[] a, int l, int h) {
        lo=l; hi=h; arr=a;
    }

    public void run() { // override must have this type
        for(int i=lo; i < hi; i++)
            ans += arr[i];
    }
}
```

Because we must override a no-arguments/no-result run, we use fields to communicate across threads.

Part 2: sum routine

```java
int sum(int[] arr){ // can be a static method
    int len = arr.length;
    int ans = 0;
    SumThread[] ts = new SumThread[4];
    for(int i=0; i < 4; i++) // do parallel computations
        ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
    for(int i=0; i < 4; i++) // combine results
        ts[i].join(); // wait for helper to finish!
    ans += ts[0].ans;
    return ans;
}
```
Recall: Parallel Sum

- Sum up N numbers in an array

- Let's implement this with threads...

Code looks something like this (using Java Threads)

```java
class SumThread extends java.lang.Thread {
  int lo, hi; int[] arr; // fields to know what to do
  int ans = 0; // result

  public void run() {
    // override
    if (hi - lo < SEQUENTIAL_CUTOFF) {
      for (int i = lo; i < hi; i++)
        ans += arr[i];
    } else {
      SumThread left = new SumThread(arr, lo, (hi+lo)/2);
      SumThread right = new SumThread(arr, (hi+lo)/2, hi);
      left.start();
      right.start();
      left.join(); // don't move this up a line - why?
      right.join();
      ans = left.ans + right.ans;
    }
  }

  int sum(int[] arr) {
    SumThread t = new SumThread(arr, 0, arr.length);
    t.run();
    return t.ans;
  }
}
```

Divide-and-conquer

Same approach useful for many problems beyond sum
- If you have enough processors, total time $O(\log n)$
- Next lecture: study reality of $P << n$ processors

- Will write all our parallel algorithms in this style
 - But using a special fork-join library engineered for this style
 - Takes care of scheduling the computation well
 - Often relies on operations being associative (like +)

Thread Overhead

Creating and managing threads incurs cost

Two optimizations:
1. Use a sequential cutoff, typically around 500-1000
 - Eliminates lots of tiny threads
2. Don't create two recursive threads; create one thread and
 do the other piece of work "yourself"
 - Cuts the number of threads created by another 2x

Half the threads!

// wasteful: don't
SumThread left = ... // better: do!
left.start();
right.start();
left.join(); // no right join needed
right.join();
ans=left.ans+right.ans;
```

Order of last 4 lines is critical - why?

```python
// wasteful: don't
SumThread left = ...
left.start();
right.start();
left.join();
right.join();
ans=left.ans+right.ans;
```

// better: do!
SumThread right = ...
left.start();
right.start();
left.join();
right.join();
ans=left.ans+right.ans;
```
Better Java Thread Library

- Even with all this care, Java's threads are too "heavyweight"
 - Constant factors, especially space overhead
 - Creating 20,000 Java threads just a bad idea 😖

- The ForkJoin Framework is designed to meet the needs of divide-and-conquer fork-join parallelism
 - In the Java 7 standard libraries
 - (Also available for Java 6 as a downloaded .jar file)
 - Section will focus on pragmatics/logistics
 - Similar libraries available for other languages
 - C/C++: Cilk (inventors), Intel's Thread Building Blocks
 - C#: Task Parallel Library
 - ...

Different terms, same basic idea

To use the ForkJoin Framework:
- A little standard set-up code (e.g., create a ForkJoinPool)
- Don't subclass Thread
- Do subclass RecursiveTask<V>
- Don't override run
- Do override compute
- Don't use an ans field
- Do return a V from compute
- Don't call start
- Do call fork
- Don't just call join
- Do call join (which returns answer)
- Don't call run to hand-optimize
- Do call compute to hand-optimize
- Don't have a topmost call to run
- Do create a pool and call invoke

See the web page for (linked in to project 3 description):
"A Beginner's Introduction to the ForkJoin Framework"

Fork Join Framework Version:

```java
class SumArray extends RecursiveTask<Integer> {
    int lo; int hi; int[] arr; // fields to know what to do
    protected Integer compute() { // return answer
        if(hi - lo < SEQUENTIAL_CUTOFF) {
            int ans = 0; // local var, not a field
            for(int i=lo; i < hi; i++)
                ans += arr[i];
            return ans;
        } else {
            SumArray left = new SumArray(arr,lo,(hi+lo)/2);
            SumArray right= new SumArray(arr,(hi+lo)/2,hi);
            left.fork(); // fork a thread and calls compute
            int rightAns = right.compute(); // call compute directly
            int leftAns = left.join(); // get result from left
            return leftAns + rightAns;
        }
    }
    static final ForkJoinPool fjPool = new ForkJoinPool();
    int sum(int[] arr){
        return fjPool.invoke(new SumArray(arr,0,arr.length));
        // invoke returns the value compute returns
    }
}
```

Parallel Sum

- Sum up N numbers in an array

Parallel Max?

- Same trick works for many tasks, e.g.,
 - is there an element satisfying some property (e.g., prime)
 - left-most element satisfying some property (e.g., first prime)
 - smallest rectangle encompassing a set of points (proj3)
 - counts: number of strings that start with a vowel
 - are these elements in sorted order?

- Called a reduction, or reduce operation
 - reduce a collection of data items to a single item
 - result can be more than a single value, e.g., produce histogram from a set of test scores

- Very common parallel programming pattern

Reductions
Parallel Vector Scaling

- Multiply every element in the array by 2

Maps

- A map operates on each element of a collection of data to produce a new collection of the same size
 - each element is processed independently of the others, e.g.
 - vector scaling
 - vector addition
 - test property of each element (is it prime)
 - uppercase to lowercase
 - ...

- Another common parallel programming pattern

Maps in ForkJoin Framework

```java
class VecAdd extends RecursiveAction {
    int l, h; int[] res; int[] arr1[] arr2;
    VecAdd(int l, int h, int[] r, int[] a1, int[] a2) ... {
        protected void compute() {
            if (h - l < SEQUENTIAL_CUTOFF) {
                for (int i = l; i < h; i++)
                    res[i] = arr1[i] + arr2[i];
            } else {
                int mid = (h + l) / 2;
                VecAdd left = new VecAdd(l, mid, res, arr1, arr2);
                VecAdd right = new VecAdd(mid, h, res, arr1, arr2);
                left.fork();
                right.compute();
                left.join();
            }
        }
    }
}
```

Maps and Reductions

Maps and reductions: the “workhorses” of parallel programming
- By far the most important and common patterns
- Learn to recognize when an algorithm can be written in terms of maps and reductions
- makes parallel programming easy (plug and play)

Distributed Map Reduce

- You may have heard of Google’s map/reduce
 - or open-source version called Hadoop
 - powers much of Google’s infrastructure

- Idea: maps/reductions using many machines
 - same principles, applied to distributed computing
 - system takes care of distributing data, fault-tolerance
 - you just write code to handle one element, reduce a collection

- Co-developed by Jeff Dean (UW alum!)

Maps and Reductions on Trees

- Max value in a min-heap
- How to parallelize?
- Is this a map or a reduce?
- Complexity?
Analyzing Parallel Programs

Let \(T_P \) be the running time on \(P \) processors.

Two key measures of run-time:
- **Work**: How long it would take 1 processor = \(T_1 \)
- **Span**: How long it would take infinity processors = \(T_\infty \)
 - The hypothetical ideal for parallelization
 - This is the longest "dependence chain" in the computation
 - Example: \(O(\log n) \) for summing an array
 - Also called "critical path length" or "computational depth"

The DAG

- Fork-join programs can be modeled with a DAG
 - nodes: pieces of work
 - edges: order dependencies

Divide and Conquer Algorithms

Our *fork* and *join* frequently look like this:

In this context, the span (\(T_\infty \)) is:
- The longest dependence-chain; longest 'branch' in parallel 'tree'
- Example: \(O(\log n) \) for summing an array; we halve the data down to our cut-off, then add back together; \(O(\log n) \) steps, \(O(1) \) time for each
- Also called "critical path length" or "computational depth"

Parallel Speed-up

- **Speed-up** on \(P \) processors: \(T_1 / T_P \)
- If speed-up is \(P \), we call it perfect linear speed-up
 - e.g., doubling \(P \) halves running time
 - hard to achieve in practice
- **Parallelism** is the maximum possible speed-up: \(T_1 / T_\infty \)
 - if you had infinite processors

Estimating \(T_P \)

- How to estimate \(T_P \) (e.g., \(P = 4 \))?
- **Lower bounds on \(T_P \)** (ignoring memory, caching...)
 1. \(T_\infty \)
 2. \(T_1 / P \)
 - which one is the tighter (higher) lower bound?
- The ForkJoin Java Framework achieves the following expected time asymptotic bound:
 \(T_P \in O(T_\infty + T_1 / P) \)
 - this bound is optimal

Amdahl’s Law

- Most programs have
 1. parts that parallelize well
 2. parts that don’t parallelize at all
- The latter become bottlenecks
Amdahl’s Law

- Let $T_1 = 1$ unit of time
- Let $S = \text{proportion that can’t be parallelized}$
 \[1 = T_1 = S + (1 - S) \]
- Suppose we get perfect linear speedup on the parallel portion:
 \[T_p = \]
- So the overall speed-up on P processors is (Amdahl’s Law):
 \[T_1 / T_p = \]
- If 1/3 of your program is parallelizable, max speedup is:

Pretty Bad News

- Suppose 25% of your program is sequential.
 - Then a billion processors won’t give you more than a 4x speedup!
- What portion of your program must be parallelizable to get 10x speedup on a 1000 core GPU?
 \[10 <= 1 / (S + (1-S)/1000) \]
- Motivates minimizing sequential portions of your programs

Take Aways

- Parallel algorithms can be a big win
- Many fit standard patterns that are easy to implement
- Can’t just rely on more processors to make things faster (Amdahl’s Law)