CSE 332:
Analysis of Fork-Join Parallel Programs

Richard Anderson
Spring 2016
New Story: Shared Memory with Threads

Threads, each with own unshared call stack and “program counter”

Heap for all objects and static fields, shared by all threads
Fork-Join Parallelism

1. Define thread
 - Java: define subclass of `java.lang.Thread`, override `run`

2. Fork: instantiate a thread and start executing
 - Java: create thread object, call `start()`

3. Join: wait for thread to terminate
 - Java: call `join()` method, which returns when thread finishes

Above uses basic thread library build into Java
Later we’ll introduce a better ForkJoin Java library designed for parallel programming
For starters: have 4 threads simultaneously sum \(\frac{1}{4}\) of the array

- Create 4 *thread objects*, each given \(\frac{1}{4}\) of the array
- Call *start()* on each thread object to run it in parallel
- Wait for threads to finish using *join()*
- Add together their 4 answers for the final result
Part 1: define thread class

```java
class SumThread extends java.lang.Thread {
    int lo; // fields, passed to constructor
    int hi; // so threads know what to do.
    int[] arr;

    int ans = 0; // result

    SumThread(int[] a, int l, int h) {
        lo=l; hi=h; arr=a;
    }

    public void run() {
        //override must have this type
        for(int i=lo; i < hi; i++)
            ans += arr[i];
    }
}
```

Because we must override a no-arguments/no-result run, we use fields to communicate across threads
Part 2: sum routine

```java
int sum(int[] arr) { // can be a static method
    int len = arr.length;
    int ans = 0;
    SumThread[] ts = new SumThread[4];
    for (int i = 0; i < 4; i++) { // do parallel computations
        ts[i] = new SumThread(arr, i * len / 4, (i + 1) * len / 4);
        ts[i].start();
    }
    for (int i = 0; i < 4; i++) { // combine results
        ts[i].join(); // wait for helper to finish!
        ans += ts[i].ans;
    }
    return ans;
}
```
Recall: Parallel Sum

• Sum up N numbers in an array

• Let’s implement this with threads...
Code looks something like this (using Java Threads)

```java
class SumThread extends java.lang.Thread {
    int lo; int hi; int[] arr; // fields to know what to do
    int ans = 0; // result

    SumThread(int[] a, int l, int h) { ... }

    public void run() { // override
        if (hi - lo < SEQUENTIAL_CUTOFF)
            for (int i = lo; i < hi; i++)
                ans += arr[i];
        else {
            SumThread left = new SumThread(arr, lo, (hi + lo) / 2);
            SumThread right = new SumThread(arr, (hi + lo) / 2, hi);
            left.start();
            right.start();
            left.join(); // don’t move this up a line – why?
            right.join();
            ans = left.ans + right.ans;
        }
    }
}

int sum(int[] arr) { // just make one thread!
    SumThread t = new SumThread(arr, 0, arr.length);
    t.run();
    return t.ans;
}
```
Thread: sum range [0,10)
 Thread: sum range [0,5)
 Thread: sum range [0,2)
 Thread: sum range [0,1) (return arr[0])
 Thread: sum range [1,2) (return arr[1])
 add results from two helper threads
 Thread: sum range [2,5)
 Thread: sum range [2,3) (return arr[2])
 Thread: sum range [3,5)
 Thread: sum range [3,4) (return arr[3])
 Thread: sum range [4,5) (return arr[4])
 add results from two helper threads
 add results from two helper threads
 Thread: sum range [5,10)
 Thread: sum range [5,7)
 Thread: sum range [5,6) (return arr[5])
 Thread: sum range [6,7) (return arr[6])
 add results from two helper threads
 Thread: sum range [7,10)
 Thread: sum range [7,8) (return arr[7])
 Thread: sum range [8,10)
 Thread: sum range [8,9) (return arr[8])
 Thread: sum range [9,10) (return arr[9])
 add results from two helper threads
 add results from two helper threads
 add results from two helper threads
add results from two helper threads

Recursive problem decomposition
Divide-and-conquer

Same approach useful for many problems beyond sum
 – If you have enough processors, total time $O(\log n)$
 – Next lecture: study reality of $P << n$ processors

• Will write all our parallel algorithms in this style
 – But using a special fork-join library engineered for this style
 • Takes care of scheduling the computation well
 – Often relies on operations being associative (like +)
Thread Overhead

Creating and managing threads incurs cost

Two optimizations:

1. Use a *sequential cutoff*, typically around 500-1000
 - Eliminates lots of tiny threads

2. Do not create two recursive threads; create one thread and do the other piece of work “yourself”
 - Cuts the number of threads created by another 2x
Half the threads!

// wasteful: don’t
SumThread left = ...
SumThread right = ...
left.start();
right.start();
left.join();
right.join();
ans=left.ans+right.ans;

// better: do!!
SumThread left = ...
SumThread right = ...
left.start();
right.run(); Note: run is a normal function call! execution won’t continue until we are done with run
left.join();
right.join(); // no right.join needed
ans=left.ans+right.ans;
Better Java Thread Library

• Even with all this care, Java’s threads are too “heavyweight”
 – Constant factors, especially space overhead
 – Creating 20,000 Java threads just a bad idea 😞

• The ForkJoin Framework is designed to meet the needs of divide-and-conquer fork-join parallelism
 – In the Java 7 standard libraries
 • (Also available for Java 6 as a downloaded .jar file)
 – Section will focus on pragmatics/logistics
 – Similar libraries available for other languages
 • C/C++: Cilk (inventors), Intel’s Thread Building Blocks
 • C#: Task Parallel Library
 • ...
Different terms, same basic idea

To use the ForkJoin Framework:
• A little standard set-up code (e.g., create a ForkJoinPool)

Don’t subclass Thread Do subclass RecursiveTask<V>
Don’t override run Do override compute
Do not use an ans field Do return a V from compute
Don’t call start Do call fork
Don’t just call join Do call join (which returns answer)
Don’t call run to hand-optimize Do call compute to hand-optimize
Don’t have a topmost call to run Do create a pool and call invoke

See the web page for (linked in to project 3 description):
“A Beginner’s Introduction to the ForkJoin Framework”
class SumArray extends RecursiveTask<Integer> {
 int lo; int hi; int[] arr; // fields to know what to do
 SumArray(int[] a, int l, int h) { ... }

 protected Integer compute() {// return answer
 if(hi - lo < SEQUENTIAL_CUTOFF) {
 int ans = 0; // local var, not a field
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 return ans;
 }
 else {
 SumArray left = new SumArray(arr,lo,(hi+lo)/2);
 SumArray right = new SumArray(arr,(hi+lo)/2,hi);
 left.fork(); // fork a thread and calls compute
 int rightAns = right.compute(); // call compute directly
 int leftAns = left.join(); // get result from left
 return leftAns + right Ans;
 }
 }
}

static final ForkJoinPool fjPool = new ForkJoinPool();
int sum(int[] arr){
 return fjPool.invoke(new SumArray(arr,0,arr.length));
 // invoke returns the value compute returns
}
Parallel Sum

• Sum up N numbers in an array
Parallel Max?
Reductions

• Same trick works for many tasks, e.g.,
 – is there an element satisfying some property (e.g., prime)
 – left-most element satisfying some property (e.g., first prime)
 – smallest rectangle encompassing a set of points (proj3)
 – counts: number of strings that start with a vowel
 – are these elements in sorted order?

• Called a reduction, or reduce operation
 – reduce a collection of data items to a single item
 • result can be more than a single value, e.g., produce histogram from a set of test scores

• Very common parallel programming pattern
Parallel Vector Scaling

- Multiply every element in the array by 2
Maps

• A **map** operates on each element of a collection of data to produce a new collection of the same size
 – each element is processed independently of the others, e.g.
 • vector scaling
 • vector addition
 • test property of each element (is it prime)
 • uppercase to lowercase
 • ...

• Another common parallel programming pattern
Maps in ForkJoin Framework

```java
class VecAdd extends RecursiveAction {
    int lo; int hi; int[] res; int[] arr1; int[] arr2;
    VecAdd(int l, int h, int[] r, int[] a1, int[] a2) {
        ... }
    protected void compute() {
        if (hi - lo < SEQUENTIAL_CUTOFF) {
            for (int i = lo; i < hi; i++)
                res[i] = arr1[i] + arr2[i];
        } else {
            int mid = (hi + lo) / 2;
            VecAdd left = new VecAdd(lo, mid, res, arr1, arr2);
            VecAdd right = new VecAdd(mid, hi, res, arr1, arr2);
            left.fork();
            right.compute();
            left.join();
        }
    }
}

static final ForkJoinPool fjPool = new ForkJoinPool();
int[] add(int[] arr1, int[] arr2) {
    assert (arr1.length == arr2.length);
    int[] ans = new int[arr1.length];
    fjPool.invoke(new VecAdd(0, arr.length, ans, arr1, arr2);
    return ans;
}
```
Maps and Reductions

Maps and reductions: the “workhorses” of parallel programming

- By far the most important and common patterns

- Learn to recognize when an algorithm can be written in terms of maps and reductions

- Makes parallel programming easy (plug and play)
Distributed Map Reduce

• You may have heard of Google’s map/reduce
 – or open-source version called Hadoop
 – powers much of Google’s infrastructure

• Idea: maps/reductions using many machines
 – same principles, applied to distributed computing
 – system takes care of distributing data, fault-tolerance
 – you just write code to handle one element, reduce a collection

• Co-developed by Jeff Dean (UW alum!)
Maps and Reductions on Trees

- Max value in a min-heap

How to parallelize?
- Is this a map or a reduce?
- Complexity?
Analyzing Parallel Programs

Let T_P be the running time on P processors.

Two key measures of run-time:

- **Work**: How long it would take 1 processor = T_1
- **Span**: How long it would take infinity processors = T_∞
 - The hypothetical ideal for parallelization
 - This is the longest “dependence chain” in the computation
 - Example: $O(\log n)$ for summing an array
 - Also called “critical path length” or “computational depth”
The DAG

- Fork-join programs can be modeled with a DAG
 - nodes: pieces of work
 - edges: order dependencies

A fork creates two children
 - new thread
 - continuation of current thread

A join makes a node with two incoming edges
 - terminated thread
 - continuation of current thread

What’s T_1 (work):

What’s T_∞ (span):
Divide and Conquer Algorithms

Our **fork** and **join** frequently look like this:

In this context, the span \(T_{\infty}\) is:

- The longest dependence-chain; longest ‘branch’ in parallel ‘tree’
- Example: \(O(\log n)\) for summing an array; we halve the data down to our cut-off, then add back together; \(O(\log n)\) steps, \(O(1)\) time for each
- Also called “critical path length” or “computational depth”
Parallel Speed-up

- **Speed-up** on P processors: T_1 / T_P

- If speed-up is P, we call it **perfect linear speed-up**
 - e.g., doubling P halves running time
 - hard to achieve in practice

- **Parallelism** is the maximum possible speed-up: T_1 / T_∞
 - if you had infinite processors
Estimating T_p

- How to estimate T_p (e.g., $P = 4$)?

- Lower bounds on T_p (ignoring memory, caching...)
 1. T_∞
 2. T_1 / P
 - which one is the tighter (higher) lower bound?

- The ForkJoin Java Framework achieves the following expected time asymptotic bound:

 $T_p \in O(T_\infty + T_1 / P)$

 - this bound is optimal
Amdahl’s Law

• Most programs have
 1. parts that parallelize well
 2. parts that don’t parallelize at all

• The latter become bottlenecks
Amdahl’s Law

- Let $T_1 = 1$ unit of time
- Let $S =$ proportion that can’t be parallelized

\[1 = T_1 = S + (1 - S) \]

- Suppose we get perfect linear speedup on the parallel portion:

\[T_P = \]

- So the overall speed-up on P processors is (Amdahl’s Law):

\[\frac{T_1}{T_P} = \]

\[\frac{T_1}{T_\infty} = \]

- If 1/3 of your program is parallelizable, max speedup is:
Pretty Bad News

• Suppose 25% of your program is sequential.
 – Then a billion processors won’t give you more than a 4x speedup!

• What portion of your program must be parallelizable to get 10x speedup on a 1000 core GPU?
 – \[10 \leq \frac{1}{S + \frac{(1-S)}{1000}}\]

• Motivates minimizing sequential portions of your programs
Take Aways

• Parallel algorithms can be a big win

• Many fit standard patterns that are easy to implement

• Can’t just rely on more processors to make things faster (Amdahl’s Law)