CSE 332: Sorting lower bound Radix sort

Richard Anderson
Spring 2016
Announcements

• Midterm Friday
 – 50 minutes, closed book
 – Old exam linked from 332 web page
How fast can we sort?

Heapsort, Mergesort, Heapsort, AVL sort all have $O(N \log N)$ worst case running time.

These algorithms, along with Quicksort, also have $O(N \log N)$ average case running time.

Can we do any better?
Permutations

• Suppose you are given N elements
 – Assume no duplicates

• How many possible orderings can you get?
 – Example: a, b, c ($N = 3$)
Permutations

• How many possible orderings can you get?
 – Example: a, b, c \((N = 3)\)
 – \((a \ b \ c), (a \ c \ b), (b \ a \ c), (b \ c \ a), (c \ a \ b), (c \ b \ a)\)
 – 6 orderings = \(3 \cdot 2 \cdot 1 = 3!\) (i.e., “3 factorial”)

• For \(N\) elements
 – \(N\) choices for the first position, \((N-1)\) choices for the second position, ..., (2) choices, 1 choice
 – \(N(N-1)(N-2)\cdots(2)(1)=N!\) possible orderings
Sorting Model

Recall our basic sorting assumption:

We can only compare two elements at a time.

These comparisons prune the space of possible orderings.

We can represent these concepts in a...
The leaves contain all the possible orderings of a, b, c.
Decision Trees

- A Decision Tree is a Binary Tree such that:
 - Each node = a set of orderings
 - i.e., the remaining solution space
 - Each edge = 1 comparison
 - Each leaf = 1 unique ordering
 - How many leaves for N distinct elements?

- Only 1 leaf has the ordering that is the desired correctly sorted arrangement
Decision Tree Example

- Possible orders: $a < b < c, b < c < a, c < a < b, a < c < b, b < a < c, c < b < a$
- Actual order: $a < b < c, a < c < b$
Decision Trees and Sorting

• Every sorting algorithm corresponds to a decision tree
 – Finds correct leaf by choosing edges to follow
 • i.e., by making comparisons
• We will focus on worst case run time
• Observations:
 – Worst case run time \geq max number of comparisons
 – Max number of comparisons
 = length of the longest path in the decision tree
 = tree height
How many leaves on a tree?

Suppose you have a binary tree of height h. How many leaves in a perfect tree?

We can prune a perfect tree to make any binary tree of same height. Can # of leaves increase?
Lower bound on Height

- A binary tree of height h has at most 2^h leaves
 - Can prove by induction
- A decision tree has $N!$ leaves. What is its minimum height?
An Alternative Explanation

At each decision point, one branch has $\leq \frac{1}{2}$ of the options remaining, the other has $\geq \frac{1}{2}$ remaining.

Worst case: we always end up with $\geq \frac{1}{2}$ remaining.

Best algorithm, in the worst case: we always end up with exactly $\frac{1}{2}$ remaining.

Thus, in the worst case, the best we can hope for is halving the space d times (with d comparisons), until we have an answer, i.e., until the space is reduced to size $= 1$.

The space starts at $N!$ in size, and halving d times means multiplying by $1/2^d$, giving us a lower bound on the worst case:

\[
\frac{N!}{2^d} = 1 \quad \Rightarrow \quad N! = 2^d \quad \Rightarrow \quad d = \log_2(N!)
\]
Lower Bound on $\log(N!)$

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Stirling’s approximation
Worst case run time of any comparison-based sorting algorithm is $\Omega(N \log N)$.

Can also show that average case run time is also $\Omega(N \log N)$.

Can we do better if we don’t use comparisons? (Huh?)
Can we sort in $O(n)$?

- Suppose keys are integers between 0 and 1000
BucketSort (aka BinSort)

If all values to be sorted are integers between 1 and B, create an array count of size B, increment counts while traversing the input, and finally output the result.

Example \(B=5 \). Input = (5,1,3,4,3,2,1,1,5,4,5)

<table>
<thead>
<tr>
<th>count array</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Running time to sort n items?
What about our $\Omega(n \log n)$ bound?
Dependence on B

What if B is very large (e.g., 2^{64})?
Fixing impracticality: RadixSort

- RadixSort: generalization of BucketSort for large integer keys

- Origins go back to the 1890 census.

- Radix = “The base of a number system”
 - We’ll use 10 for convenience, but could be anything

- Idea:
 - BucketSort on one digit at a time
 - After k^{th} sort, the last k digits are sorted
 - Set number of buckets: $B = \text{radix}$.
Radix Sort Example

Input: 478, 537, 9, 721, 3, 38, 123, 67

<table>
<thead>
<tr>
<th>BucketSort on 1’s</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>BucketSort on 10’s</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>BucketSort on 100’s</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Output:
Radix Sort Example (1st pass)

Bucket sort by 1's digit

Input data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>478</td>
<td>537</td>
<td>721</td>
<td>123</td>
<td>3</td>
<td>38</td>
<td>123</td>
<td>67</td>
<td>537</td>
<td>478</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

After 1st pass

| 721 | 3 | 123 | 537 | 67 | 478 | 38 | 9 |

This example uses B=10 and base 10 digits for simplicity of demonstration. Larger bucket counts should be used in an actual implementation.
Radix Sort Example (2nd pass)

After 1st pass

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>721</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td></td>
</tr>
<tr>
<td>537</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
</tr>
<tr>
<td>478</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Bucket sort by 10’s digit

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td></td>
</tr>
<tr>
<td>721</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td></td>
</tr>
<tr>
<td>537</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
</tr>
<tr>
<td>478</td>
<td></td>
</tr>
</tbody>
</table>

After 2nd pass

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>721</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td></td>
</tr>
<tr>
<td>537</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
</tr>
<tr>
<td>478</td>
<td></td>
</tr>
</tbody>
</table>
Radix Sort Example (3rd pass)

<table>
<thead>
<tr>
<th>Bucket sort by 100’s digit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>003</td>
</tr>
</tbody>
</table>

After 2nd pass

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>721</td>
</tr>
<tr>
<td>123</td>
</tr>
<tr>
<td>537</td>
</tr>
<tr>
<td>38</td>
</tr>
<tr>
<td>67</td>
</tr>
<tr>
<td>478</td>
</tr>
</tbody>
</table>

Invariant: after k passes the low order k digits are sorted.
Radixsort: Complexity

In our examples, we had:
- Input size, \(N \)
- Number of buckets, \(B = 10 \)
- Maximum value, \(M < 10^3 \)
- Number of passes, \(P = \)

How much work per pass?

Total time?
Choosing the Radix

Run time is roughly proportional to:

\[P(B+N) = \log_B M(B+N) \]

Can show that this is minimized when:

\[B \log_e B \approx N \]

In theory, then, the best base (radix) depends only on \(N \). For fast computation, prefer \(B = 2^b \). Then best \(b \) is:

\[b + \log_2 b \approx \log_2 N \]

Example:

- \(N = 1 \) million (i.e., \(\sim 2^{20} \)) 64 bit numbers, \(M = 2^{64} \)
- \(\log_2 N \approx 20 \) \(\rightarrow \) \(b = 16 \)
- \(B = 2^{16} = 65,536 \) and \(P = \log_{(2^{16})} 2^{64} = 4. \)

In practice, memory word sizes, space, other architectural considerations, are important in choosing the radix.
Big Data: External Sorting

Goal: **minimize disk/tape access** time:
- Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
- Mergesort scans linearly through arrays, leading to (relatively) efficient sequential disk access

Basic Idea:
- Load chunk of data into Memory, sort, store this “run” on disk/tape
- Use the Merge routine from Mergesort to merge runs
- Repeat until you have only one run (one sorted chunk)
- Mergesort can leverage multiple disks
- Weiss gives some examples
Sorting Summary

\(O(N^2) \) average, worst case:
- Selection Sort, Bubblesort, Insertion Sort

\(O(N \log N) \) average case:
- Heapsort: In-place, not stable.
- BST Sort: \(O(N) \) extra space (including tree pointers, possibly poor memory locality), stable.
- Mergesort: \(O(N) \) extra space, stable.
- Quicksort: claimed fastest in practice, but \(O(N^2) \) worst case. Recursion/stack requirement. Not stable.

\(\Omega(N \log N) \) worst and average case:
- Any comparison-based sorting algorithm

\(O(N) \)