CSE 332: Data Abstractions Sorting I
Spring 2016
Announcements
Sorting

• Input
 – an array A of data records
 – a key value in each data record
 – a comparison function which imposes a consistent ordering on the keys

• Output
 – “sorted” array A such that
 • For any i and j, if $i < j$ then $A[i] \leq A[j]$
The comparison function must provide a consistent ordering on the set of possible keys

- You can compare any two keys and get back an indication of $a < b$, $a > b$, or $a = b$ (trichotomy)
- The comparison functions must be consistent
 - If $\text{compare}(a,b)$ says $a < b$, then $\text{compare}(b,a)$ must say $b > a$
 - If $\text{compare}(a,b)$ says $a = b$, then $\text{compare}(b,a)$ must say $b = a$
 - If $\text{compare}(a,b)$ says $a = b$, then $\text{equals}(a,b)$ and $\text{equals}(b,a)$ must say $a = b$
Why Sort?

- Provides fast search:
- Find kth largest element in:
Space

• How much space does the sorting algorithm require?
 – In-place: no more than the array or at most $O(1)$ addition space
 – out-of-place: use separate data structures, copy back
 – External memory sorting – data so large that does not fit in memory
Stability

A sorting algorithm is **stable** if:

– Items in the input with the same value end up in the same order as when they began.

<table>
<thead>
<tr>
<th>Input</th>
<th>Unstable sort</th>
<th>Stable Sort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adams</td>
<td>Adams 1</td>
<td>Adams 1</td>
</tr>
<tr>
<td>Black</td>
<td>Smith 1</td>
<td>Smith 1</td>
</tr>
<tr>
<td>Brown</td>
<td>Washington 2</td>
<td>Black 2</td>
</tr>
<tr>
<td>Jackson</td>
<td>Jackson 2</td>
<td>Jackson 2</td>
</tr>
<tr>
<td>Jones</td>
<td>Black 2</td>
<td>Washington 2</td>
</tr>
<tr>
<td>Smith</td>
<td>White 3</td>
<td>White 3</td>
</tr>
<tr>
<td>Thompson</td>
<td>Wilson 3</td>
<td>Wilson 3</td>
</tr>
<tr>
<td>Washington</td>
<td>Thompson 4</td>
<td>Brown 4</td>
</tr>
<tr>
<td>White</td>
<td>Brown 4</td>
<td>Jones 4</td>
</tr>
<tr>
<td>Wilson</td>
<td>Jones 4</td>
<td>Thompson 4</td>
</tr>
</tbody>
</table>
Time

How fast is the algorithm?

– This means that you need to at least check on each element at the very minimum
 • Complexity is at least:
– And you could end up checking each element against every other element
 • Complexity could be as bad as:

The big question: How close to $O(n)$ can you get?
Sorting: *The Big Picture*

- **Simple algorithms:** $O(n^2)$
 - Insertion sort
 - Selection sort
 - …

- **Fancier algorithms:** $O(n \log n)$
 - Heap sort
 - Merge sort
 - Quick sort (avg)
 - …

- **Comparison lower bound:** $\Omega(n \log n)$

- **Specialized algorithms:** $O(n)$
 - Bucket sort
 - Radix sort

- **Handling huge data sets**
 - External sorting
Demo (with sound!)

- http://www.youtube.com/watch?v=kPRA0W1kECg
Selection Sort: idea

1. Find the smallest element, put it 1st
2. Find the next smallest element, put it 2nd
3. Find the next smallest, put it 3rd
4. And so on …
Try it out: Selection Sort

- 31, 16, 54, 4, 2, 17, 6
Selection Sort: Code

```c
void SelectionSort (Array a[0..n-1]) {
    for (i=0; i<n; ++i) {
        j = Find index of smallest entry in a[i..n-1]
        Swap(a[i],a[j])
    }
}
```

Runtime:

- worst case:
- best case:
- average case:
Bubble Sort

• Take a pass through the array
 – If neighboring elements are out of order, swap them.
• Repeat until no swaps needed

• Wost & avg case: $O(n^2)$
 – pretty much no reason to ever use this algorithm
Insertion Sort

1. Sort first 2 elements.
2. Insert 3rd element in order.
 • (First 3 elements are now sorted.)
3. Insert 4th element in order
 • (First 4 elements are now sorted.)
4. And so on…
How to do the insertion?

Suppose my sequence is:

16, 31, 54, 78, 32, 17, 6

And I’ve already sorted up to 78. How to insert 32?
Try it out: Insertion sort

- 31, 16, 54, 4, 2, 17, 6
Insertion Sort: Code

```c
void InsertionSort (Array a[0..n-1]) {
    for (i=1; i<n; i++) {
        for (j=i; j>0; j--) {
            if (a[j] < a[j-1])
                Swap(a[j],a[j-1])
            else
                break
        }
    }
}
```

Note: can instead move the “hole” to minimize copying, as with a binary heap.

Runtime:

worst case :
best case :
average case :
Insertion Sort vs. Selection Sort

- Same worst case, avg case complexity
- Insertion better best-case
 - preferable when input is “almost sorted”
 - one of the best sorting algs for almost sorted case (also for small arrays)
Sorting: *The Big Picture*

- **Simple algorithms:** $O(n^2)$
 - Insertion sort
 - Selection sort
 - ...

- **Fancier algorithms:** $O(n \log n)$
 - Heap sort
 - Merge sort
 - Quick sort (avg)
 - ...

- **Comparison lower bound:** $\Omega(n \log n)$

- **Specialized algorithms:** $O(n)$
 - Bucket sort
 - Radix sort

- **Handling huge data sets**
 - External sorting
Heap Sort: Sort with a Binary Heap

Worst Case Runtime:
In-place heap sort

- Treat the initial array as a heap (via `buildHeap`)
- When you delete the i^{th} element, put it at `arr[n-i]`
 - It’s not part of the heap anymore!

```
arr = [4, 7, 5, 9, 8, 6, 10, 3, 2, 1]

heap part  sorted part
```

```
arr = [5, 7, 6, 9, 8, 10, 4, 3, 2, 1]

heap part  sorted part
```
AVL Sort

Insert nodes into an AVL Tree
Conduct an In-order traversal to extract nodes in sorted order

Worst Case Runtime:
“Divide and Conquer”

• Very important strategy in computer science:
 – Divide problem into smaller parts
 – Independently solve the parts
 – Combine these solutions to get overall solution

• **Idea 1**: Divide array in half, *recursively* sort left and right halves, then *merge* two halves
 \(\rightarrow \) known as Mergesort

• **Idea 2**: Partition array into small items and large items, then recursively sort the two sets
 \(\rightarrow \) known as Quicksort
Mergesort

- Divide it in two at the midpoint
- Sort each half (recursively)
- Merge two halves together
Mergesort Example

Divide

Divide

Divide

1 element

Merge

Merge

Merge

Merge

Mergesort sort Example

8 2 9 4 5 3 1 6

8 2 9 4

5 3 1 6

5 3

1 6

3 5

1 6

1 3 5 6

1 2 3 4 5 6 8 9
Merging: Two Pointer Method

- Perform merge using an auxiliary array
Merging: Two Pointer Method

• Perform merge using an auxiliary array

```
2 4 8 9 1 3 5 6
```

Auxiliary array
Merging: Two Pointer Method

- Perform merge using an auxiliary array

```
 2 4 8 9 1 3 5 6
```

Auxiliary array
Merging: Finishing Up

Starting from here...

Left finishes up

or

Right finishes up
Merging: Two Pointer Method

- Final result

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
</table>

Auxiliary array

Complexity? Stability?
Merge(A[], Temp[], left, mid, right)

Int i, j, k, l, target

i = left
j = mid + 1

while (i <= mid && j <= right) {
 if (A[i] <= A[j])
 Temp[target] = A[i++]
 else
 Temp[target] = A[j++]
 target++
}

if (i > mid) //left completed//
for (k = left to target-1)
 A[k] = Temp[k];

if (j > right) //right completed//
 k = mid
 l = right
while (k > i)
 A[l--] = A[k--]
for (k = left to target-1)
 A[k] = Temp[k]
}
Recursive Mergesort

MainMergesort(A[1..n], n) {
 Array Temp[1..n]
 Mergesort[A, Temp, 1, n]
}

Mergesort(A[], Temp[], left, right) {
 if (left < right) {
 mid = (left + right)/2
 Mergesort(A, Temp, left, mid)
 Mergesort(A, Temp, mid+1, right)
 Merge(A, Temp, left, mid, right)
 }
}

What is the recurrence relation?
Mergesort: Complexity
Iterative Mergesort

Merge by 1
Merge by 2
Merge by 4
Merge by 8
Iterative Mergesort reduces copying
Complexity?
Properties of Mergesort

- In-place?
- Stable?
- Sorted list complexity?
- Nicely extends to handle linked lists.
- Multi-way merge is basis of big data sorting.
- Java uses Mergesort on Collections and on Arrays of Objects.