CSE 332: Hash Tables

Hunter Zahn (for Richard Anderson)
Spring 2016

AVL find, insert, delete: \(O(\log n)\)

Suppose (unique) keys between 0 and 1000.
- Can we do better than \(O(\log n)\)?

Arrays for Dictionaries

Now suppose keys are first, last names
- how big is the key space?

But keyspace is sparsely populated
- \(<10^5\) active students

Hash Tables

- Map keys to a smaller array called a hash table
 - via a hash function \(h(K)\)
 - Find, insert, delete: \(O(1)\) on average!

Simple Integer Hash Functions

- key space \(K = \text{integers}\)
- TableSize = 10

- \(h(K) = \)
 - Insert: 7, 18, 41, 34
Simple Integer Hash Functions

- **key space**: $K = \text{integers}$
- **TableSize** = 7
- **$h(K) = K \% 7$**
- **Insert**: 7, 18, 41, 34

Aside: Properties of Mod

To keep hashed values within the size of the table, we will generally do:

$$h(K) = \text{function}(K) \% \text{TableSize}$$

(In the previous examples, function(K) = K.)

Useful properties of mod:

- $(a + b) \% c = [(a \% c) + (b \% c)] \% c$
- $(a \times b) \% c = [(a \% c) \times (b \% c)] \% c$
- $a \% c = b \% c \implies (a - b) \% c = 0$

String Hash Functions?

What’s a good hash function for a string?

Some String Hash Functions

- **key space**: $K = s_0, s_1, s_2, \ldots, s_{m-1}$ (where s_i are chars: $s_i \in [0, 128]$)

 1. $h(K) = s_0 \% \text{TableSize}$
 2. $h(K) = \left(\sum_{i=0}^{m-1} s_i\right) \% \text{TableSize}$
 3. $h(K) = \left(\sum_{i=0}^{m-1} s_i \times 128^i\right) \% \text{TableSize}$

Hash Function Desiderata

What are good properties for a hash function?

Designing Hash Functions

Often based on **modular hashing**:

$$h(K) = f(K) \% P$$

P is typically the TableSize

P is often chosen to be prime:

- Reduces likelihood of collisions due to patterns in data
- Is useful for guarantees on certain hashing strategies (as we’ll see)

But what would be a more convenient value of P?
A Fancier Hash Function

Some experimental results indicate that modular hash functions with prime tables sizes are not ideal. Lots of better solutions, e.g.,

```java
jenkinsOneAtATimeHash(String key, int keyLength) {
    hash = 0;
    for (i = 0; i < key_len; i++) {
        hash += key[i];
        hash += (hash << 10);
        hash ^= (hash >> 6);
    }
    hash += (hash << 3);
    hash ^= (hash >> 11);
    hash += (hash << 15);
    return hash % TableSize;
}
```

Collision Resolution

Collision: when two keys map to the same location in the hash table.

How handle this?

Separate Chaining

Insert:
0 10
1 22
2 107
3 12
4 42
5
6
7
8
9

All keys that map to the same hash value are kept in a list (or “bucket”).

Analysis of Separate Chaining

The load factor, λ, of a hash table is

$$\lambda = \frac{N}{\text{TableSize}}$$

Average cost of:
- Unsuccessful find?
- Successful find?
- Insert?
Open Addressing

The approach on the previous slide is an example of open addressing:
After a collision, try "next" spot. If there's another collision, try another, etc.

Finding the next available spot is called probing:
0th probe = h(k) % TableSize
1st probe = (h(k) + f(1)) % TableSize
2nd probe = (h(k) + f(2)) % TableSize

...in probe = (h(k) + f(i)) % TableSize
f(i) is the probing function. We'll look at a few...

Linear Probing

f(i) = i

• Probe sequence:
 0th probe = h(K) % TableSize
 1st probe = (h(K) + 1) % TableSize
 2nd probe = (h(K) + 2) % TableSize
 ...in probe = (h(K) + i) % TableSize

Linear Probing – Clustering

Analysis of Linear Probing

• For any \(\lambda < 1 \), linear probing will find an empty slot
• Expected # of probes (for large table sizes)
 – unsuccessful search:
 \[
 \frac{1}{2} \left(1 + \frac{1}{\lambda - 1}\right)
 \]
 – successful search:
 \[
 \frac{1}{2} \left(1 + \frac{1}{\lambda - 1}\right)
 \]
• Linear probing suffers from primary clustering
• Performance quickly degrades for \(\lambda > 1/2 \)
Quadratic Probing

\[f(i) = i^2 \]

- Probe sequence:
 - 0th probe = \(h(K) \mod \text{TableSize} \)
 - 1st probe = \((h(K) + 1) \mod \text{TableSize} \)
 - 2nd probe = \((h(K) + 4) \mod \text{TableSize} \)
 - 3rd probe = \((h(K) + 9) \mod \text{TableSize} \)
 - \ldots
 - \(ith \) probe = \((h(K) + i^2) \mod \text{TableSize} \)

Less likely to encounter Primary Clustering

Quadra
tic Probing Example

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Insert:
- 89
- 18
- 49
- 58
- 79

Another Quadratic Probing Example

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TableSize = 7
\(h(K) = K \mod 7 \)
- insert(76) \(76 \mod 7 = 6 \)
- insert(40) \(40 \mod 7 = 5 \)
- insert(48) \(48 \mod 7 = 6 \)
- insert(5) \(5 \mod 7 = 5 \)
- insert(55) \(55 \mod 7 = 6 \)
- insert(47) \(47 \mod 7 = 5 \)

Quadratic Probing: Success guarantee for \(\lambda < \frac{1}{2} \)

Assertion #1: If \(T = \text{TableSize} \) is prime and \(\lambda < \frac{1}{2} \), then quadratic probing will find an empty slot in \(\leq \frac{T}{2} \) probes.

Assertion #2: For prime \(T \) and all \(0 \leq i, j \leq \frac{T}{2} \) and \(i \neq j \),

\[(h(K) + i^2) \mod T \neq (h(K) + j^2) \mod T \]

Assertion #3: Assertion #2 proves assertion #1.

Quadratic Probing: Properties

- For any \(\lambda < \frac{1}{2} \), quadratic probing will find an empty slot; for bigger \(\lambda \), quadratic probing may find a slot.

- Quadratic probing does not suffer from primary clustering: keys hashing to the same area is ok

- But what about keys that hash to the same slot?
 - Secondary Clustering!
Double Hashing

Idea: given two different (good) hash functions \(h(K) \) and \(g(K) \), it is unlikely for two keys to collide with both of them.

So...let’s try probing with a second hash function:

\[
f(i) = i \cdot g(K)
\]

• Probe sequence:
 0\(^{th}\) probe = \(h(K) \mod \text{TableSize} \)
 1\(^{st}\) probe = \((h(K) + g(K)) \mod \text{TableSize} \)
 2\(^{nd}\) probe = \((h(K) + 2g(K)) \mod \text{TableSize} \)
 3\(^{rd}\) probe = \((h(K) + 3g(K)) \mod \text{TableSize} \)
 \ldots
 \(i^{th}\) probe = \((h(K) + ig(K)) \mod \text{TableSize} \)

Double Hashing Example

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>93</td>
<td>40</td>
<td>47</td>
<td>10</td>
<td>55</td>
<td>5</td>
</tr>
</tbody>
</table>

\(\text{TableSize} = 7 \)
\(h(K) = K \mod 7 \)
\(g(K) = 5 - (K \mod 5) \)

Another Example of Double Hashing

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>28</td>
<td>33</td>
<td>147</td>
<td>43</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hash Functions:

\(T = \text{TableSize} = 10 \)
\(h(K) = K \mod T \)
\(g(K) = 1 + (K/T) \mod (T-1) \)

Analysis of Double Hashing

• Double hashing is safe for \(\lambda < 1 \) for this case:

 \(h(k) = k \mod p \)

 \(g(k) = q - (k \mod q) \)

 \(2 < q < p, \text{ and } p, q \text{ are primes} \)

• Expected # of probes (for large table sizes)

 unsuccessful search:

 \[
 \frac{1}{1-\lambda}
 \]

 successful search:

 \[
 \frac{1}{\lambda \log_e \left(\frac{1}{1-\lambda} \right)}
 \]

Deletion in Separate Chaining

How do we delete an element with separate chaining?

Deletion in Open Addressing

\(h(k) = k \mod 7 \)

Linear probing

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>23</td>
<td></td>
<td>59</td>
<td>76</td>
</tr>
</tbody>
</table>

Delete(23)
Find(59)
Insert(30)
Need to keep track of deleted items... leave a “marker”
Rehashing

When the table gets too full, create a bigger table (usually 2x as large) and hash all the items from the original table into the new table.

- When to rehash?
 - Separate chaining: full ($\lambda = 1$)
 - Open addressing: half full ($\lambda = 0.5$)
 - When an insertion fails
 - Some other threshold

- Cost of a single rehashing?

Amortized Analysis of Rehashing

- Cost of inserting n keys is < $3n$
- suppose $2^k + 1 \leq n \leq 2^{k+1}$
 - Hashes = n
 - Rehashes = $2 + 2^2 + \ldots + 2^k = 2^{k+1} - 2$
 - Total = $n + 2^{k+1} - 2 < 3n$
- Example
 - $n = 33$, Total = $33 + 64 - 2 = 95 < 99$

Equal objects must hash the same

- The Java library (and your project hash table) make a very important assumption that clients must satisfy...
 - if $c.compare(a, b) == 0$, then we require $h.hash(a) == h.hash(b)$
- If you ever override equals
 - You need to override hashCode also in a consistent way
 - See CoreJava book, Chapter 5 for other “gotchas” with equals

Hashing Summary

- Hashing is one of the most important data structures.
- Hashing has many applications where operations are limited to find, insert, and delete.
 - But what is the cost of doing, e.g., findMin?
- Can use:
 - Separate chaining (easiest)
 - Open hashing (memory conservation, no linked list management)
 - Java uses separate chaining
- Rehashing has good amortized complexity.
- Also has a big data version to minimize disk accesses: extendible hashing. (See book.)

Terminology Alert!

- We (and the book) use the terms
 - “chaining” or “separate chaining”
 - “open addressing”

- Very confusingly
 - “open hashing” is a synonym for “chaining”
 - “closed hashing” is a synonym for “open addressing”
Hashing vs. AVL Trees

• Advantages of Hash Tables

• Advantages of AVL Trees