CSE 332: Hash Tables

Hunter Zahn (for Richard Anderson)
Spring 2016
Announcements
AVL find, insert, delete: $O(\log n)$

Suppose (unique) keys between 0 and 1000.
- Can we do better than $O(\log n)$?
Arrays for Dictionaries

Now suppose keys are first, last names
 – how big is the key space?

But keyspace is sparsely populated
 – <10^5 active students
Hash Tables

• Map keys to a smaller array called a hash table
 – via a hash function $h(K)$
 – Find, insert, delete: $O(1)$ on average!
Simple Integer Hash Functions

- key space $K = \text{integers}$
- TableSize $= 10$

- $h(K) =$

- **Insert**: 7, 18, 41, 34
Simple Integer Hash Functions

- key space $K = \text{integers}$
- TableSize = 7
- $h(K) = K \mod 7$
- **Insert**: 7, 18, 41, 34

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
</table>
Aside: Properties of Mod

To keep hashed values within the size of the table, we will generally do:

\[h(K) = \text{function}(K) \mod \text{TableSize} \]

(In the previous examples, function(K) = K.)

Useful properties of mod:
- \((a + b) \mod c = [(a \mod c) + (b \mod c)] \mod c\)
- \((a \times b) \mod c = [(a \mod c) \times (b \mod c)] \mod c\)
- \(a \mod c = b \mod c \rightarrow (a - b) \mod c = 0\)
String Hash Functions?

What’s a good hash function for a string?
Some String Hash Functions

key space = strings

\[K = s_0 \ s_1 \ s_2 \ \ldots \ \ s_{m-1} \text{ (where } s_i \text{ are chars: } s_i \in [0, 128]) \]

1. \[h(K) = s_0 \mod \text{TableSize} \]

2. \[h(K) = \left(\sum_{i=0}^{m-1} s_i \right) \mod \text{TableSize} \]

3. \[h(K) = \left(\sum_{i=0}^{m-1} s_i \cdot 128^i \right) \mod \text{TableSize} \]
Hash Function Desiderata

What are good properties for a hash function?
Designing Hash Functions

Often based on modular hashing:
\[h(K) = f(K) \mod P \]

P is typically the TableSize

P is often chosen to be prime:
- Reduces likelihood of collisions due to patterns in data
- Is useful for guarantees on certain hashing strategies (as we’ll see)

But what would be a more convenient value of P?
A Fancier Hash Function

Some experimental results indicate that modular hash functions with prime tables sizes are not ideal.
Lots of better solutions, e.g.,

```java
jenkinsOneAtATimeHash(String key, int keyLength) {
    hash = 0;
    for (i = 0; i < key_len; i++) {
        hash += key[i];
        hash += (hash << 10);
        hash ^= (hash >> 6);
        hash += (hash << 3);
        hash ^= (hash >> 11);
        hash += (hash << 15);
    }
    return hash % TableSize;
}
```
Collision Resolution

Collision: when two keys map to the same location in the hash table.
How handle this?
Separate Chaining

All keys that map to the same hash value are kept in a list (or “bucket”).

Insert:
10
22
107
12
42
Analysis of Separate Chaining

The load factor, λ, of a hash table is

$$\lambda = \frac{N}{\text{TableSize}}$$

λ = average # of elems per bucket

$$\lambda = \frac{10}{1} + \frac{2 + 1 + 3}{2} + \frac{42}{3} + \frac{12 + 22}{4} + \frac{86}{5}$$

$\lambda = \frac{10 + 1 + 3 + 42 + 12 + 22 + 86}{N}$

UW CSE 332, Spring 2016
Analysis of Separate Chaining

The **load factor**, λ, of a hash table is

$$\lambda = \frac{N}{\text{TableSize}}$$

$\lambda = \text{average # of elems per bucket}$

Average cost of:

- Unsuccessful find?
- Successful find?
- Insert?
Alternative: Use Empty Space in the Table

Insert:

38
19
 8
109
10

Try h(K).
If full, try h(K)+1.
If full, try h(K)+2.
If full, try h(K)+3.
Etc…
Open Addressing

The approach on the previous slide is an example of **open addressing**:

After a collision, try “next” spot. If there’s another collision, try another, etc.

Finding the next available spot is called **probing**:

\[
0^{\text{th}} \text{ probe} = h(k) \mod \text{TableSize} \\
1^{\text{th}} \text{ probe} = (h(k) + f(1)) \mod \text{TableSize} \\
2^{\text{th}} \text{ probe} = (h(k) + f(2)) \mod \text{TableSize} \\
\ldots \\
i^{\text{th}} \text{ probe} = (h(k) + f(i)) \mod \text{TableSize}
\]

\(f(i) \) is the probing function. We’ll look at a few…
Linear Probing

\[f(i) = i \]

- Probe sequence:

 \[0^{th} \text{ probe} = h(K) \% \text{ TableSize} \]

 \[1^{th} \text{ probe} = (h(K) + 1) \% \text{ TableSize} \]

 \[2^{th} \text{ probe} = (h(K) + 2) \% \text{ TableSize} \]

 \[\ldots \]

 \[i^{th} \text{ probe} = (h(K) + i) \% \text{ TableSize} \]
Linear Probing

Try $h(K)$
If full, try $h(K)+1$.
If full, try $h(K)+2$.
If full, try $h(K)+3$.
Etc…

Insert:
38
19
8
109
10
Linear Probing – Clustering

- No collision
- Collision in small cluster
- Collision in large cluster

UW CSE 332, Spring 2016 [R. Sedgewick]
Analysis of Linear Probing

• For any \(\lambda < 1 \), linear probing will find an empty slot
• Expected # of probes (for large table sizes)
 – unsuccessful search:
 \[
 \frac{1}{2} \left(1 + \frac{1}{(1 - \lambda)^2} \right)
 \]
 – successful search:
 \[
 \frac{1}{2} \left(1 + \frac{1}{1 - \lambda} \right)
 \]
• Linear probing suffers from primary clustering
• Performance quickly degrades for \(\lambda > 1/2 \)
Quadratic Probing

$$f(i) = i^2$$

- Probe sequence:

 0\(^{th}\) probe = \(h(K) \mod \text{TableSize}\)

 1\(^{th}\) probe = \((h(K) + 1) \mod \text{TableSize}\)

 2\(^{th}\) probe = \((h(K) + 4) \mod \text{TableSize}\)

 3\(^{th}\) probe = \((h(K) + 9) \mod \text{TableSize}\)

 \ldots

 \(i^{th}\) probe = \((h(K) + i^2) \mod \text{TableSize}\)
Quadratic Probing Example

Insert:
89
18
49
58
79
Another Quadratic Probing Example

Table Size = 7

h(K) = K \% 7

- Insert(76) \(76 \% 7 = 6\)
- Insert(40) \(40 \% 7 = 5\)
- Insert(48) \(48 \% 7 = 6\)
- Insert(5) \(5 \% 7 = 5\)
- Insert(55) \(55 \% 7 = 6\)
- Insert(47) \(47 \% 7 = 5\)
Quadratic Probing:
Success guarantee for $\lambda < \frac{1}{2}$

Assertion #1: If $T = \text{TableSize}$ is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in $\leq \frac{T}{2}$ probes.

Assertion #2: For prime T and all $0 \leq i, j \leq \frac{T}{2}$ and $i \neq j$,

$$(h(K) + i^2) \% T \neq (h(K) + j^2) \% T$$

Assertion #3: Assertion #2 proves assertion #1.
Quadratic Probing:
Success guarantee for $\lambda < \frac{1}{2}$

We can prove assertion #2 by contradiction. Suppose that for some $i \neq j$, $0 \leq i, j \leq T/2$, prime T:

$$(h(K) + i^2) \% T = (h(K) + j^2) \% T$$
Quadratic Probing: Properties

• For any $\lambda < \frac{1}{2}$, quadratic probing will find an empty slot; for bigger λ, quadratic probing may find a slot.

• Quadratic probing does not suffer from primary clustering: keys hashing to the same area is ok

• But what about keys that hash to the same slot?
 – Secondary Clustering!
Double Hashing

Idea: given two different (good) hash functions $h(K)$ and $g(K)$, it is unlikely for two keys to collide with both of them.

So...let’s try probing with a second hash function:

$$f(i) = i \times g(K)$$

• Probe sequence:

 0^{th} probe = $h(K) \mod \text{TableSize}$
 1^{th} probe = $(h(K) + g(K)) \mod \text{TableSize}$
 2^{th} probe = $(h(K) + 2g(K)) \mod \text{TableSize}$
 3^{th} probe = $(h(K) + 3g(K)) \mod \text{TableSize}$

 ...

 i^{th} probe = $(h(K) + i g(K)) \mod \text{TableSize}$
Double Hashing Example

TableSize = 7

h(K) = K % 7

g(K) = 5 - (K % 5)

Insert(76) 76 % 7 = 6 and 5 - 76 % 5 =
Insert(93) 93 % 7 = 2 and 5 - 93 % 5 =
Insert(40) 40 % 7 = 5 and 5 - 40 % 5 =
Insert(47) 47 % 7 = 5 and 5 - 47 % 5 =
Insert(10) 10 % 7 = 3 and 5 - 10 % 5 =
Insert(55) 55 % 7 = 6 and 5 - 55 % 5 =
Another Example of Double Hashing

Hash Functions:

\[T = \text{Table Size} = 10 \]
\[h(K) = K \mod T \]
\[g(K) = 1 + \left(\frac{K}{T}\right) \mod (T-1) \]

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

13
28
33
147
43
Analysis of Double Hashing

• Double hashing is safe for \(\lambda < 1 \) for this case:
 – \(h(k) = k \% p \)
 – \(g(k) = q - (k \% q) \)
 – \(2 < q < p, \) and \(p, q \) are primes

• Expected # of probes (for large table sizes)
 – unsuccessful search:
 \[
 \frac{1}{1 - \lambda}
 \]
 – successful search:
 \[
 \frac{1}{\lambda \log_e \left(\frac{1}{1 - \lambda} \right)}
 \]
Deletion in Separate Chaining

How do we delete an element with separate chaining?
Deletion in Open Addressing

\[h(k) = k \mod 7 \]

Linear probing

Delete(23)
Find(59)
Insert(30)

Need to keep track of deleted items... leave a "marker"
Rehashing

When the table gets too full, create a bigger table (usually 2x as large) and hash all the items from the original table into the new table.

• When to rehash?
 – Separate chaining: full \((\lambda = 1)\)
 – Open addressing: half full \((\lambda = 0.5)\)
 – When an insertion fails
 – Some other threshold

• Cost of a single rehashing?
Rehashing Picture

- Starting with table of size 2, double when load factor > 1.
Amortized Analysis of Rehashing

• Cost of inserting n keys is $< 3n$
 • suppose $2^k + 1 \leq n \leq 2^{k+1}$
 – Hashes = n
 – Rehashes = $2 + 2^2 + \ldots + 2^k = 2^{k+1} - 2$
 – Total = $n + 2^{k+1} - 2 < 3n$

• Example
 – $n = 33$, Total = $33 + 64 - 2 = 95 < 99$
Equal objects must hash the same

• The Java library (and your project hash table) make a very important assumption that clients must satisfy…

\[
\text{if } c.\text{compare}(a, b) == 0, \text{ then we require } \\
\text{h.hash}(a) == \text{h.hash}(b)
\]

• If you ever override equals
 – You need to override hashCode also in a consistent way
 – See CoreJava book, Chapter 5 for other "gotchas" with equals
Hashing Summary

- Hashing is one of the most important data structures.
- Hashing has many applications where operations are limited to find, insert, and delete.
 - But what is the cost of doing, e.g., findMin?
- Can use:
 - Separate chaining (easiest)
 - Open hashing (memory conservation, no linked list management)
 - Java uses separate chaining
- Rehashing has good amortized complexity.
- Also has a big data version to minimize disk accesses: extendible hashing. (See book.)
Terminology Alert!

- We (and the book) use the terms
 - “chaining” or “separate chaining”
 - “open addressing”

- Very confusingly
 - “open hashing” is a synonym for “chaining”
 - “closed hashing” is a synonym for “open addressing”
Hashing vs. AVL Trees

• Advantages of Hash Tables

• Advantages of AVL Trees