Announcements

- 4/11: AVL Trees
- 4/13: B-Trees, Project due
- 4/15: B-Trees
- 4/18: Hashing, Taxes due
- 4/20: Hashing
- 4/22: Sorting
- 4/25: Sorting
- 4/27: Sorting
- 4/29: Midterm

Binary Search Tree Data Structure

- Structural property
 - each node has ≤ 2 children
- Order property
 - all keys in left subtree smaller than root’s key
 - all keys in right subtree larger than root’s key
- Find / Insert
 - Compare with node value to go left or right
 - Runtime O(height)
- Works great, unless tree is unbalanced

Balanced binary trees

- Binary tree with guarantee on depths of leaves
- O(log n) insert and delete
- Many flavors
 - Red-black trees
 - Self-adjusting binary trees
 - 2-3 trees
 - AVL Trees

AVL Trees

- Developed in 1962 by Soviet mathematicians Gregory Adelson-Velsky and Eugene Landis
- Structural property on tree guarantees depth O(log n)
- Rebalance operation to ensure property
- Practical

AVL Tree overview

- Balance condition
- Depth bound
- Rotations to rebalance the tree
The AVL Tree Data Structure

Structural properties
1. Binary tree property
2. Balance: left.height – right.height
3. Balance property: balance of every node is between -1 and 1
Result:
Worst-case depth is $O(\log n)$

Ordering property
Same as for BST

An AVL tree?

The shallowness bound
Let $S(h)$ = the minimum number of nodes in an AVL tree of height h
- $S(h)$ grows exponentially in h, so a tree with n nodes has a logarithmic height

• Define $S(h)$ inductively using AVL property
 - $S(-1)=0$, $S(0)=1$, $S(1)=2$
 - For $h \geq 1$, $S(h) = 1 + S(h-1) + S(h-2)$
- Show this recurrence grows really fast
 - Similar to Fibonacci numbers
 - Can prove for all h, $S(h) > \phi^h - 1$ where ϕ is the golden ratio, $(1+\sqrt{5})/2$, about 1.62

The Golden Ratio

$\phi = \frac{1+\sqrt{5}}{2} \approx 1.62$

This is a special number
- Golden ratio: if $a/b = a/b$, then $a = \phi b$
- We will need one special arithmetic fact about ϕ:
 \[
 \phi^2 = \frac{(1+\sqrt{5})/2 \cdot 2}{(1 - 2 \cdot \frac{1+\sqrt{5}}{2} + 5)/2} = \frac{(1 + 2 \cdot \frac{1+\sqrt{5}}{2})/4}{(1 - 2 \cdot \frac{1+\sqrt{5}}{2} + 5)/2} = \frac{1 + (1 + \sqrt{5})/2}{2} = 1 + \phi
 \]

The proof

Theorem: For all $h \geq 0$, $S(h) > \phi^h - 1$
Proof: By induction on h
Base cases:
- $S(0) = 1 > \phi^0 - 1 = 0$
- $S(1) = 2 > \phi^1 - 1 = 0.62$

Inductive case ($k > 1$):
Show $S(k+1) > \phi^{k+1} - 1$ assuming $S(k) > \phi^k - 1$ and $S(k-1) > \phi^{k-1} - 1$

$S(k+1) = S(k) + S(k-1)$ by definition of S
 - $1 > \phi^k - 1 + \phi^{k-1} - 1$ by induction
 - $\phi^k + \phi^{k-1} - 1$ by arithmetic (factor ϕ^{k-1})
 - $\phi^k + (\phi + 1) - 1$ by arithmetic
 - $\phi^k - 1$ by special property of ϕ
Good news

Proof means that if we have an AVL tree, then \(\text{find} \) is \(O(\log n) \)

- Recall logarithms of different bases > 1 differ by only a constant factor

But as we insert and delete elements, we need to:

1. Track balance
2. Detect imbalance
3. Restore balance

Is this AVL tree balanced?
How about after \(\text{insert}(10) \)?

AvL tree operations

- **AVL find:**
 - Same as BST \(\text{find} \)

- **AVL insert:**
 - First BST \(\text{insert} \), then check balance and potentially "fix" the AVL tree
 - Four different imbalance cases

- **AVL delete:**
 - The "easy way" is lazy deletion
 - Otherwise, do the deletion and then have several imbalance cases (next lecture)

Insert: detect potential imbalance

1. Insert the new node as in a BST (a new leaf)
2. For each node on the path from the root to the new leaf, the insertion may (or may not) have changed the node's height
3. So after recursive insertion in a subtree, detect height imbalance and perform a rotation to restore balance at that node

All the action is in defining the correct rotations to restore balance

Fact that an implementation can ignore:

- There must be a deepest element that is imbalanced after the insert (all descendants still balanced)
- After rebalancing this deepest node, every node is balanced
- So at most one node needs to be rebalanced

Case #1: Example

- Insert(6)
- Insert(3)
- Insert(1)

Third insertion violates balance property
- happens to be at the root

What is the only way to fix this?

Fix: Apply “Single Rotation”

- **Single rotation:** The basic operation we'll use to rebalance
 - Move child of unbalanced node into parent position
 - Parent becomes the "other" child (always okay in a BST!)
 - Other subtrees move in only way BST allows (next slide)

AVL Property violated here

Intuition: 3 must become root
- new parent height = old parent height before insert
The example generalized

- Node imbalanced due to insertion somewhere in left-left grandchild increasing height
 - 1 of 4 possible imbalance causes (other three coming)
- First we did the insertion, which would make a imbalanced

Another example: **insert(16)**

- Simple example: **insert(1), insert(6), insert(3)**
 - First wrong idea: single rotation like we did for left-left

The general left-left case

- Node imbalanced due to insertion somewhere in left-left grandchild
 - 1 of 4 possible imbalance causes (other three coming)
- So we rotate at a, using BST facts: \(X < b < Y < a < Z \)
- A single rotation restores balance at the node
 - To same height as before insertion, so ancestors now balanced

The general right-right case

- Mirror image to left-left case, so you rotate the other way
 - Exact same concept, but need different code

Two cases to go

Unfortunately, single rotations are not enough for insertions in the left-right subtree or the right-left subtree

Simple example: **insert(1), insert(6), insert(3)**
 - First wrong idea: single rotation like we did for left-left
Two cases to go

Unfortunately, single rotations are not enough for insertions in the left-right subtree or the right-left subtree.

Simple example: `insert(1), insert(6), insert(3)`

- Second wrong idea: single rotation on the child of the unbalanced node

The general right-left case

Sometimes two wrongs make a right 😊

- First idea violated the BST property
- Second idea didn’t fix balance
- But if we do both single rotations, starting with the second, it works! (And not just for this example.)

Double rotation:
1. Rotate problematic child and grandchild
2. Then rotate between self and new child

Intuition: 3 must become root

Comments

- Like in the left-left and right-right cases, the height of the subtree after rebalancing is the same as before the insert
 - So no ancestor in the tree will need rebalancing
- Does not have to be implemented as two rotations; can just do:

Easier to remember than you may think:
- Move c to grandparent’s position
- Put a, b, X, U, V, and Z in the only legal positions for a BST

The last case: left-right

- Mirror image of right-left
 - Again, no new concepts, only new code to write

Insert, summarized

- Insert as in a BST
- Check back up path for imbalance, which will be 1 of 4 cases:
 - Node’s left-left grandchild is too tall
 - Node’s left-right grandchild is too tall
 - Node’s right-left grandchild is too tall
 - Node’s right-right grandchild is too tall
- Only one case occurs because tree was balanced before insert
- After the appropriate single or double rotation, the smallest-unbalanced subtree has the same height as before the insertion
 - So all ancestors are now balanced