Announcements

Fun with sums

\[
\sum_{k=1}^{\infty} \left(\frac{1}{2^k} + \frac{1}{4^k} + \frac{1}{8^k} + \cdots \right) = \left(\frac{1}{2^1} + \frac{1}{4^1} + \frac{1}{8^1} + \cdots \right) + \left(\frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{8^2} + \cdots \right) = 2
\]

ADTs Seen So Far

- Stack
 - Push
 - Pop
- Priority Queue
 - Insert
 - DeleteMin
- Queue
 - Enqueue
 - Dequeue

None of these support “find”

The Dictionary ADT

- Data: a set of (key, value) pairs
- Operations:
 - Insert (key, value)
 - Find (key)
 - Remove (key)

The Dictionary ADT is also called the “Map ADT”

Implementations

- Unsorted Linked-list
- Unsorted array
- Sorted array
Binary Trees

• Binary tree is
 – a root
 – left subtree (maybe empty)
 – right subtree (maybe empty)

• Representation:

Tree Traversals

A traversal is an order for visiting all the nodes of a tree

Three types:
• Pre-order: Root, left subtree, right subtree
• In-order: Left subtree, root, right subtree
• Post-order: Left subtree, right subtree, root

Inorder Traversal

void traverse(BNode t){
 if (t != NULL)
 traverse(t.left);
 process t.element;
 traverse(t.right);
}

Binary Tree: Special Cases

Recall: height of a tree = longest path from root to leaf.

For binary tree of height h:
 – max # of leaves:
 – max # of nodes:
 – min # of leaves:
 – min # of nodes:
Binary Search Tree Data Structure

- Structural property
 - each node has ≤ 2 children

- Order property
 - all keys in left subtree smaller than root's key
 - all keys in right subtree larger than root's key

Example and Counter-Example

Find in BST, Recursive

```java
Node Find(Object key, Node root) {
  if (root == NULL)
    return NULL;
  if (key < root.key)
    return Find(key, root.left);
  else if (key > root.key)
    return Find(key, root.right);
  else
    return root;
}
```

Run time:

Find in BST, Iterative

```java
Node Find(Object key, Node root) {
  while (root != NULL && root.key != key) {
    if (key < root.key)
      root = root.left;
    else
      root = root.right;
  }
  return root;
}
```

Run time:

Bonus: FindMin/FindMax

- Find minimum

- Find maximum

Insert in BST

- Insert(13)
- Insert(8)
- Insert(31)

Insertions happen only at the leaves — easy!
BuildTree for BST
• Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into an initially empty BST.

 If inserted in given order, what is the tree? What big-O runtime for this kind of sorted input?

If inserted in reverse order, what is the tree? What big-O runtime for this kind of sorted input?

Deletion in BST

Why might deletion be harder than insertion?

Deletion
• Removing an item disrupts the tree structure.
• Basic idea: find the node that is to be removed. Then “fix” the tree so that it is still a binary search tree.
• Three cases:
 – node has no children (leaf node)
 – node has one child
 – node has two children

Deletion – The Leaf Case

Delete(17)

Deletion – The One Child Case

Delete(15)
Deletion: The Two Child Case

What can we replace 5 with?

Deletion – The Two Child Case

Idea: Replace the deleted node with a value between the two child subtrees

Options:

- succ from right subtree: findMin(t.right)
- pred from left subtree: findMax(t.left)

Now delete the original node containing succ or pred

- Leaf or one child case – easy!

Finally...

7 replaces 5

Original node containing 7 gets deleted

Balanced BST

Observations

- BST: the shallower the better!
- For a BST with n nodes
 - Average depth (averaged over all possible insertion orderings) is O(log n)
 - Worst case maximum depth is O(n)
- Simple cases such as insert(1, 2, 3, ..., n) lead to the worst case scenario

Solution: Require a Balance Condition that

1. ensures depth is O(log n) – strong enough!
2. is easy to maintain – not too strong!