Announcements
Fun with sums

\[
\sum_{i=1}^{\infty} \frac{i}{2^i} = \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \cdots \\
= \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots \right) + \left(\frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots \right) + \left(\frac{1}{8} + \frac{1}{16} + \cdots \right) + \cdots \\
= 1 + \frac{1}{2} + \frac{1}{4} + \cdots \\
= 2
\]
ADTs Seen So Far

• **Stack**
 – Push
 – Pop

• **Queue**
 – Enqueue
 – Dequeue

• **Priority Queue**
 – Insert
 – DeleteMin

None of these support “find”
The Dictionary ADT

• Data:
 – a set of (key, value) pairs

• Operations:
 – Insert (key, value)
 – Find (key)
 – Remove (key)

The Dictionary ADT is also called the “Map ADT”
Implementations

- Unsorted Linked-list
- Unsorted array
- Sorted array
Binary Trees

- Binary tree is
 - a root
 - left subtree (*maybe empty*)
 - right subtree (*maybe empty*)

- Representation:
Binary Tree: Representation
Tree Traversals

A *traversal* is an order for visiting all the nodes of a tree

Three types:
- **Pre-order**: Root, left subtree, right subtree
- **In-order**: Left subtree, root, right subtree
- **Post-order**: Left subtree, right subtree, root

(an expression tree)
Inorder Traversal

```c
void traverse(BNode t){
    if (t != NULL)
        traverse (t.left);
    process t.element;
    traverse (t.right);
}
```
Binary Tree: Special Cases

- **Complete Tree**
- **Full Tree**
- **Perfect Tree**
- **“List” Tree**
Binary Tree: Some Numbers…

Recall: height of a tree = longest path from root to leaf.

For binary tree of height h:

- max # of leaves:
- max # of nodes:
- min # of leaves:
- min # of nodes:
Binary Search Tree Data Structure

- **Structural property**
 - each node has ≤ 2 children

- **Order property**
 - all keys in left subtree smaller than root’s key
 - all keys in right subtree larger than root’s key
Example and Counter-Example

BINARY SEARCH TREES?
Find in BST, Recursive

Node Find(Object key,
 Node root) {
 if (root == NULL)
 return NULL;

 if (key < root.key)
 return Find(key,
 root.left);
 else if (key > root.key)
 return Find(key,
 root.right);
 else
 return root;
}
Node Find(Object key, Node root) {

 while (root != NULL && root.key != key) {
 if (key < root.key)
 root = root.left;
 else
 root = root.right;
 }

 return root;
}
Bonus: FindMin/FindMax

- Find minimum

- Find maximum
Insert in BST

Insert(13)
Insert(8)
Insert(31)

Insertions happen only at the leaves – easy!

Runtime:
Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into an initially empty BST.

If inserted in given order, what is the tree? What big-O runtime for this kind of sorted input?

If inserted in reverse order, what is the tree? What big-O runtime for this kind of sorted input?
BuildTree for BST

• Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into an initially empty BST.

 – If inserted median first, then left median, right median, etc., what is the tree? What is the big-O runtime for this kind of sorted input?
Deletion in BST

Why might deletion be harder than insertion?
Deletion

• Removing an item disrupts the tree structure.
• Basic idea: find the node that is to be removed. Then “fix” the tree so that it is still a binary search tree.
• Three cases:
 – node has no children (leaf node)
 – node has one child
 – node has two children
Deletion – The Leaf Case

Delete(17)
Deletion – The One Child Case

Delete(15)
Deletion: The Two Child Case

Delete(5)

What can we replace 5 with?
Deletion – The Two Child Case

Idea: Replace the deleted node with a value _between_ the two child subtrees

Options:

- _succ_ from right subtree: findMin(t.right)
- _pred_ from left subtree: findMax(t.left)

Now delete the original node containing _succ_ or _pred_

- Leaf or one child case – easy!
Finally…

7 replaces 5

Original node containing 7 gets deleted
Balanced BST

Observations

• BST: the shallower the better!
• For a BST with n nodes
 – Average depth (averaged over all possible insertion orderings) is $O(\log n)$
 – Worst case maximum depth is $O(n)$
• Simple cases such as insert(1, 2, 3, ..., n) lead to the worst case scenario

Solution: Require a **Balance Condition** that

1. ensures depth is $O(\log n)$ — strong enough!
2. is easy to maintain — not too strong!