
CSE 332: Data Structures and Parallelism

Section 3: BSTs, Recurrences, and Amortized Analysis

0. Interview Question: Binary Search Trees
Write pseudo-code to perform an in-order traversal in a binary search tree without using recursion.

1. Recurrences and Closed Forms
For the following code snippet, find a recurrence for the worst case runtime of the function, and then find a
closed form for the recurrence.

Consider the function f :

1 f(n) {
2 if (n == 0) {
3 return 1;
4 }
5 return 2 * f(n − 1) + 1;
6 }

• Find a recurrence for f(n).

• Find a closed form for f(n).

1



2. Recurrences and Closed Forms
For the following code snippet, find a recurrence for the worst case runtime of the function, and then find a
closed form for the recurrence.
Consider the function g:

1 g(n) {
2 if (n < 3) {
3 return 1000;
4 }
5 if (g(n/3) > 5) {
6 for (int i = 0; i < n; i++) {
7 System.out.println("Yay!");
8 }
9 return 5 * g(n/3);

10 }
11 else {
12 for (int i = 0; i < n * n; i++) {
13 System.out.println("Yay!");
14 }
15 return 4 * g(n/3);
16 }
17 } • Find a recurrence for g(n).

• Find a closed form for g(n).

3. MULTI-pop
Consider augmenting the Stack ADT with an extra operation:

multipop(k): Pops up to k elements from the Stack and returns the number of elements it popped

What is the amortized cost of a series of push’s, Stack assuming push and pop are both O(1)?

2


