CSE 332: Data Structures and Parallelism

BSTs, Recurrences, and Amortized Analysis 3 Solutions

Interview Question: Binary Search Trees

Write pseudo-code to perform an in-order traversal in a binary search tree without using recursion.

Solution:

This algorithm is implemented as the BST Iterator in P2. Check it out!

Recurrences and Closed Forms

For the following code snippet, find a recurrence for the worst case runtime of the function, and then find a closed form for the recurrence.

Consider the function f :
f(n) \{
if ($\mathrm{n}==0$) \{
return 1;
\}
return 2 * $\mathrm{f}(\mathrm{n}-1)+1$;
\}

- Find a recurrence for $f(n)$.

Solution:

$$
T(n)= \begin{cases}c_{0} & \text { if } n=0 \\ T(n-1)+c_{1} & \text { otherwise }\end{cases}
$$

- Find a closed form for $f(n)$.

Solution:

Unrolling the recurrence, we get $T(n)=\underbrace{c_{1}+c_{1}+\cdots+c_{1}}_{n \text { times }}+c_{0}=c_{1} n+c_{0}$.

Recurrences and Closed Forms

For the following code snippet, find a recurrence for the worst case runtime of the function, and then find a closed form for the recurrence.
Consider the function g :

```
g(n) {
    if (n < 3) {
        return 1000;
    }
    if (g(n/3) > 5) {
        for (int i = 0; i < n; i++) {
            System.out.println("Yay!");
        }
        return 5 * g(n/3);
    }
    else {
        for (int i = 0; i < n * n; i++) {
            System.out.println("Yay!");
        }
        return 4*g(n/3);
    }
    } Find a recurrence for }g(n)\mathrm{ .
```


Solution:

Note that the else statement will never actually happen in practice. The solution to $g(n)$ is always greater than 5 (in fact, greater than 1000).

$$
T(n)= \begin{cases}c_{0} & \text { if } n=1 \\ 2 T(n / 3)+c_{1} n & \text { otherwise }\end{cases}
$$

- Find a closed form for $g(n)$.

Solution:

Let's take an inventory of all of the numbers we have to consider.

- Branching Factor / Number of Function Calls from each Recursive Case Function Call $b=2$
- Reduction in Size of N for each step $r=3$
- Work in Each Recursive Function Call $w_{\text {recur }}=c_{1} n$
- Work in Base Case / Final Function Calls $w_{\text {base }}=c_{0}$
- Height of Recursion Tree / Number of Function Calls until Base Case $h=\log _{r} n=\log _{3} n$
- Number of Base Case Calls / Leaf Nodes of Recursive Tree $n_{\text {base }}=b^{h}=2^{\log _{3} n}$

Now, let's build a summation to evaluate the recursive case.

$$
\sum_{i=0}^{h}\left(\frac{b}{r}\right)^{i} w_{r e c u r}+n_{\text {base }} w_{\text {base }}=\sum_{i=0}^{\log _{3}(n)-1}\left(\left(\frac{2}{3}\right)^{i} c_{1} n\right)+2^{\log _{3} n} c_{0}
$$

Let's simplify this equation. We will take advantage of a few uncommon properties. The sum of the finite geometric series $\sum_{i=0}^{n} x^{i}=\frac{1-x^{n+1}}{1-x},|x|<1$ and the nifty \log property $n^{\log _{b} x}=x^{\log _{b} n}$.

$$
\begin{aligned}
\sum_{i=0}^{\log _{3}(n)-1}\left(\left(\frac{2}{3}\right)^{i} c_{1} n\right)+2^{\log _{3} n} c_{0} & =c_{1} n \sum_{i=0}^{\log _{3}(n)-1}\left(\frac{2}{3}\right)^{i}+2^{\log _{3} n} c_{0} \\
& =c_{1} n\left(\frac{1-\left(\frac{2}{3}\right)^{\log _{3}(n)}}{1-\frac{2}{3}}\right)+c_{0} n^{\log _{3}(2)} \\
& =c_{1} n\left(\frac{1-\left(\frac{2^{\log _{3}(n)}}{3^{\log _{3}(n)}}\right)}{\frac{1}{3}}\right)+c_{0} n^{\log _{3}(2)} \\
& =3 c_{1} n\left(1-\frac{n^{\log _{3}(2)}}{n}\right)+c_{0} n^{\log _{3}(2)} \\
& =3 c_{1} n-3 c_{1} n^{\log _{3}(2)}+c_{0} n^{\log _{3}(2)} \\
& =3 c_{1} n+\left(c_{0}-3 c_{1}\right) n^{\log _{3}(2)}
\end{aligned}
$$

Since $n^{\log _{3}(2)} \leq n^{\log _{3}(3)}=n$ can conclude that the $3 c_{1} n$ term dominates the asymptotic runtime, so the function is, indeed, $O(n)$.

MULTI-pop

Consider augmenting the Stack ADT with an extra operation:
multipop (k): Pops up to k elements from the Stack and returns the number of elements it popped
What is the amortized cost of a series of push's, Stack assuming push and pop are both $\mathcal{O}(1)$?

Solution:

Consider an empty Stack. If we run various operations (multipop, pop, and push) on the Stack until it is once again empty, we see the following: Note that multipop(k) takes $c k$ time. If over the course of running the operations, we push n items, then each item is associated with at most one multipop or pop. It follows that the largest amount of time the multipops can take in aggregate is n. Note that the smallest possible number of operations to amortize over is $n+1$ (n pushes and 1 multipop). So, the worst amortized cost of a series of pushes, pops, and multipops is $\frac{2 n}{n+1}=\mathcal{O}(1)$. Where $2 n$ comes from n pushes $+n$ for the largest amount of time the multipops can take. The denominator comes from n pushes and 1 multipop (The smallest number of operations we could have that would take this long.).

