0. Heaps
Insert 10, 7, 15, 17, 12, 20, 6, 32 into a min heap.
Now, insert the same values into a max heap.
Now, insert the same values into a min heap, but use Floyd’s buildHeap algorithm. **Solution:**

```
ninHeap
  6
 /   \
10   7
 /   /   \
17  12  20  15
   /   \
  32

naxHeap
  6
 /   \
32
 /   \
20  17
 /   /   \
15  12  10  6
   /   \
  7

floyd's
  6
 /   \
7   10
 /   /   \
17  12  20  15
   /   \
  32
```
1. Big-Oh Proofs

For each of the following, prove that \(f \in \mathcal{O}(g) \).

(a) \(f(n) = 7n \)
 \(g(n) = \frac{n}{10} \)

Solution: Choose \(c = 70 \), \(n_0 = 1 \). Then, note that \(7n = \frac{70n}{10} \leq 70 \left(\frac{n}{10} \right) \) for all \(n \geq 1 \). So, \(f(n) \in \mathcal{O}(g(n)) \).

(b) \(f(n) = 1000 \)
 \(g(n) = 3n^3 \)

Solution: Choose \(c = 1 \), \(n_0 = 1000 \). Then, note that \(1000 \leq n \leq 3n^3 \) for all \(n \geq 1000 \). So, \(f(n) \in \mathcal{O}(g(n)) \).

(c) \(f(n) = 7n^2 + 3n \)
 \(g(n) = n^4 \)

Solution: Choose \(c = 14 \), \(n_0 = 1 \). Then, note that \(7n^2 + 3n \leq 7(n^4 + n^4) \leq 14n^4 \) for all \(n \geq 1 \). So, \(f(n) \in \mathcal{O}(g(n)) \).

(d) \(f(n) = n + 2n \lg n \)
 \(g(n) = n \lg n \)

Solution: Choose \(c = 3 \), \(n_0 = 2 \). Then, note that \(n + 2n \lg n \leq n \lg n + 2n \lg n = 3n \lg n \) for all \(n \geq 2 \). So, \(f(n) \in \mathcal{O}(g(n)) \).
2. Is Your Program Running? Better Catch It!

For each of the following, determine the asymptotic worst-case runtime in terms of \(n \).

(a)

```c
int x = 0;
for (int i = n; i >= 0; i--) {
    if ((i % 3) == 0) {
        break;
    }
    else {
        x += n;
    }
}
```

Solution: This is \(\Theta(1) \), because \(n \), \(n - 1 \), or \(n - 2 \) will be divisible by three. So, the loop runs at most 3 times.

(b)

```c
int x = 0;
for (int i = 0; i < n; i++) {
    for (int j = 0; j < (n * n / 3); j++) {
        x += j;
    }
}
```

Solution:

\[
\sum_{i=0}^{n-1} \sum_{j=0}^{n^2/3-1} 1 = \sum_{i=0}^{n-1} \frac{n^2}{3} = n \left(\frac{n^2}{3} \right) \in \Theta(n^3)
\]

(c)

```c
int x = 0;
for (int i = 0; i <= n; i++) {
    for (int j = 0; j < (i * i); j++) {
        x += j;
    }
}
```

Solution:

\[
\sum_{i=0}^{n} \sum_{j=0}^{i^2-1} 1 = \sum_{i=0}^{n} i^2 = \left(\frac{n(n+1)(2n+1)}{6} \right) \in \Theta(n^3)
\]
3. Induction Shminduction

Prove \(\sum_{i=0}^{n} 2^i = 2^{n+1} - 1 \) by induction on \(n \).

Solution:

Let \(P(n) \) be the statement \(\sum_{i=0}^{n} 2^i = 2^{n+1} - 1 \) for all \(n \in \mathbb{N} \). We prove \(P(n) \) by induction on \(n \).

Base Case. Note that \(\sum_{i=0}^{0} 2^i = 0 = 2^0 - 1 \). So, \(P(0) \) is true.

Induction Hypothesis. Suppose \(P(k) \) is true for some \(k \in \mathbb{N} \).

Induction Step. Note that

\[
\sum_{i=0}^{k+1} 2^i = \sum_{i=0}^{k} 2^i + 2^{k+1}
\]

\[
= 2^{k+1} - 1 + 2^{k+1} \quad \text{[By IH]}
\]

\[
= 2^{k+2} - 1
\]

Note that this is exactly \(P(k+1) \).

So, the claim is true by induction on \(n \).

4. The Implications of Asymptotics

For each of the following, determine if the statement is true or false.

(a) \(f(n) \in \Theta((g(n)) \rightarrow f(n) \in O(g(n)) \)

Solution:

This is true. By definition of \(f(n) \in \Theta((g(n)), \) we have \(f(n) \in O(g(n)) \).

(b) \(f(n) \in \Theta(g(n)) \rightarrow g(n) \in \Theta(f(n)) \)

Solution:

This is true. By definition of \(f(n) \in \Theta(g(n)), \) we have \(f(n) \in O(g(n)) \) and \(f(n) \in \Omega(g(n)) \). So, there exist \(n_0, n_1, c_0, c_1 > 0 \) such that \(f(n) \leq c_0 g(n) \) for all \(n \geq n_0 \) and \(f(n) \geq c_1 g(n) \) for all \(n \geq n_1 \). Define \(n_2 = \max(n_0, n_1) \) and note that both inequalities hold for all \(n \geq n_2 \). Then, dividing both sides by their constants, we have:

\[
g(n) \geq \frac{f(n)}{c_0}
\]

\[
g(n) \leq \frac{f(n)}{c_1}
\]

So, we’ve found constants \(\left(\frac{1}{c_0}, \frac{1}{c_1} \right) \) and a minimum \(n (n_2) \) that satisfy the definitions of Omega and Oh. It follows that \(g(n) \) is \(\Theta(f(n)) \).

(c) \(f(n) \in \Omega(g(n)) \rightarrow g(n) \in O(f(n)) \)
Solution:
This is true. This is basically identical to the previous part (except we only have to do half the work).

5. Asymptotic Analysis
For each of the following, determine if $f \in O(g)$, $f \in \Omega(g)$, $f \in \Theta(g)$, several of these, or none of these.

(a) $f(n) = \log n \quad g(n) = \log \log n$

Solution: $f(n) \in \Omega(g(n))$

(b) $f(n) = 2^n \quad g(n) = 3^n$

Solution: $f(n) \in O(g(n))$

(c) $f(n) = 2^{2n} \quad g(n) = 2^n$

Solution: $f(n) \in \Omega(g(n))$