CSE 332: Data Structures & Parallelism
Lecture 23: Disjoint Sets

Ruth Anderson
Autumn 2016
Aside: Union-Find aka Disjoint Set ADT

- **Union(x,y)** – take the union of two sets named x and y
 - Given sets: \{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}
 - **Union(5,1)**
 - Result: \{3,5,7,1,6\}, \{4,2,8\}, \{9\},

To perform the union operation, we replace sets x and y by \((x \cup y)\)

- **Find(x)** – return the name of the set containing x.
 - Given sets: \{3,5,7,1,6\}, \{4,2,8\}, \{9\},
 - **Find(1)** returns 5
 - **Find(4)** returns 8

- We can do Union in constant time.
- We can get Find to be *amortized* constant time
 (worst case \(O(\log n)\) for an individual Find operation).
Implementing the DS ADT

- n elements,
 Total Cost of: m finds, $\leq n-1$ unions

- Target complexity: $O(m+n)$
 \hspace{1cm} \text{i.e. } O(1) \text{ amortized}

- $O(1)$ worst-case for find as well as union would be great, but…
 \textbf{Known result:} both find and union \textit{cannot} be done in worst-case $O(1)$ time

\begin{center}
\textit{can there be more unions?}
\end{center}
Data Structure for the DS ADT

- **Observation**: trees let us find many elements given one root...

- **Idea**: if we reverse the pointers (make them point up from child to parent), we can find a single root from many elements...

- **Idea**: Use one tree for each equivalence class. The name of the class is the tree root.
Up-Tree for Disjoint Union/Find

Initial state: 1 2 3 4 5 6 7

After several Unions:

Roots are the names of each set.
Find Operation

Find(x) - follow x to the root and return the root

Find(6) = 7
Union Operation

$\text{Union}(x,y)$ - assuming x and y are roots, point y to x.

Union(1,7)
Simple Implementation

- Array of indices

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
0 & 1 & 0 & 7 & 7 & 5 & 0 \\
\end{array}
\]

Up\[x\] = 0 means x is a root.
Implementation

```c
int Find(int x) {
    while(up[x] != 0) {
        x = up[x];
    }
    return x;
}
```

```c
void Union(int x, int y) {
    up[y] = x;
}
```

runtime for Union():

runtime for Find():

runtime for m Finds and n-1 Unions:
A Bad Case

Union(x,y) – “point y to x”

Union(2,1)

Union(3,2)

\vdots

Union(n,n-1)

Find(1) n steps!!
Now this doesn’t look good 😞

Can we do better? Yes!

1. Improve union so that find only takes $\Theta(\log n)$
 - Union-by-size
 - Reduces complexity to $\Theta(m \log n + n)$

2. Improve find so that it becomes even better!
 - Path compression
 - Reduces complexity to almost $\Theta(m + n)$
Weighted Union/Union by Size

- Weighted Union
 - Always point the *smaller* (total # of nodes) tree to the root of the larger tree

```
W-Union(1,7)
```

```
1  3
2
```

```
7   4
5   6
```
Example Again

\[
\text{W-Union}(2,1)
\]

\[
\text{W-Union}(3,2)
\]

\[
\vdots
\]

\[
\text{W-Union}(n,2)
\]

\[
\text{Find}(1) \quad \text{constant time}
\]
Analysis of Weighted Union

With weighted union an up-tree of height h has weight \textit{at least} 2^h.

- Proof by induction
 - \textbf{Basis}: $h = 0$. The up-tree has one node, $2^0 = 1$
 - \textbf{Inductive step}: Assume true for all $h' < h$.

\[W(T_1) \geq W(T_2) \geq 2^{h-1} \]
\[W(T) \geq 2^{h-1} + 2^{h-1} = 2^h \]
Analysis of Weighted Union (cont)

Let T be an up-tree of weight n formed by weighted union. Let h be its height.

\[n \geq 2^h \]
\[\log_2 n \geq h \]

- Find(x) in tree T takes $O(\log n)$ time.
 - Can we do better?
Worst Case for Weighted Union

n/2 Weighted Unions

n/4 Weighted Unions
Example of Worst Cast (cont’)

After $\frac{n}{2} + \frac{n}{4} + \ldots + 1$ Weighted Unions:

If there are $n = 2^k$ nodes then the longest path from leaf to root has length k.

$log_2 n$
Array Implementation
Weighted Union

\[
\text{W-Union}(i,j : \text{index}) \{ \\
\quad \text{//} i \text{ and } j \text{ are roots} \\
\quad w_i := \text{weight}[i]; \\
\quad w_j := \text{weight}[j]; \\
\quad \text{if } w_i < w_j \text{ then} \\
\quad \quad \text{up}[i] := j; \\
\quad \quad \text{weight}[j] := w_i + w_j; \\
\quad \text{else} \\
\quad \quad \text{up}[j] := i; \\
\quad \quad \text{weight}[i] := w_i + w_j; \\
\}\]

new runtime for Union():

new runtime for Find():

\[
\text{runtime for } m \text{ finds and } n-1 \text{ unions} =
\]
Nifty Storage Trick

• Use the same array representation as before

• Instead of storing \(-1\) for the root, simply store \(-\text{size}\)

[Read section 8.4]
How about Union-by-height?

- Can still guarantee $O(\log n)$ worst case depth

 Left as an exercise!

- Problem: Union-by-height doesn’t combine very well with the new find optimization technique we’ll see next
Path Compression

• On a Find operation point all the nodes on the search path directly to the root.

```
PC - Find(3)
```

![Diagram showing path compression](image)
Path Compression

• On a Find operation point all the nodes on the search path directly to the root.
Draw the result of Find(e):
Self-Adjustment Works

PC-Find(x)
Path Compression Find

PC-Find(i : index) {
 r := i;
 while up[r] ≠ -1 do //find root//
 r := up[r];
 if i ≠ r then //compress path//
 k := up[i];
 while k ≠ r do
 up[i] := r;
 i := k;
 k := up[k]
 return(r)
}
Path Compression: Code

```
int Find(Object x) {
    // x had better be in
    // the set!
    int xID = hTable[x];
    int i = xID;

    // Get the root for
    // this set
    while(up[xID] != -1) {
        xID = up[xID];
    }

    // Change the parent for
    // all nodes along the path
    while(up[i] != -1) {
        temp = up[i];
        up[i] = xID;
        i = temp;
    }
    return xID;
}
```

(New?) runtime for Find:
Interlude: A Really Slow Function

Ackermann’s function is a really big function $A(x, y)$ with inverse $\alpha(x, y)$ which is really small.

How fast does $\alpha(x, y)$ grow?

$\alpha(x, y) = 4$ for x far larger than the number of atoms in the universe (2^{300}).

α shows up in:

- Computation Geometry (surface complexity)
- Combinatorics of sequences
A More Comprehensible Slow Function

\[\log^* x = \text{number of times you need to compute } \log \text{ to bring value down to at most 1} \]

E.g. \(\log^* 2 = 1 \)
\[\log^* 4 = \log^* 2^2 = 2 \]
\[\log^* 16 = \log^* 2^{2^2} = 3 \] \hspace{1cm} (log log log 16 = 1)
\[\log^* 65536 = \log^* 2^{2^{2^2}} = 4 \] \hspace{1cm} (log log log log 65536 = 1)
\[\log^* 2^{65536} = \ldots \ldots = 5 \]

Take this: \(\alpha(m,n) \) grows even slower than \(\log^* n \) !!
Complex Complexity of Union-by-Size + Path Compression

Tarjan proved that, with these optimizations, \(p \) union and find operations on a set of \(n \) elements have worst case complexity of \(O(p \cdot \alpha(p, n)) \)

For *all practical purposes* this is amortized constant time:

\(O(p \cdot 4) \) for \(p \) operations!

- Very complex analysis
Disjoint Union / Find
with Weighted Union and PC

• Worst case time complexity for a W-Union is $O(1)$ and for a PC-Find is $O(\log n)$.
• Time complexity for $m \geq n$ operations on n elements is $O(m \log^* n)$ where $\log^* n$ is a very slow growing function.
 – $\log^* n < 7$ for all reasonable n. Essentially constant time per operation!
• Using “ranked union” gives an even better bound theoretically.
Amortized Complexity

• For disjoint union / find with weighted union and path compression.
 – average time per operation is essentially a constant.
 – worst case time for a PC-Find is $O(\log n)$.
• An individual operation can be costly, but over time the average cost per operation is not.
Find MST using Kruskal’s

• Now find the MST using Prim’s method.
• Under what conditions will these methods give the same result?
<table>
<thead>
<tr>
<th>Nodes</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Draw the UpTree

<table>
<thead>
<tr>
<th>Nodes</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>