CSE 332: Data Structures & Parallelism

Lecture 2(a): Disjoint Sets

Ruth Anderson
Autumn 2016
Aside: **Union-Find aka Disjoint Set ADT**

- **Union(x,y)** – take the union of two sets named x and y
 - Given sets: \{3, 5, 7\}, \{4, 2, 8\}, \{9\}, \{1, 6\}
 - **Union(5,1)**
 - Result: \{3, 5, 7, 1, 6\}, \{4, 2, 8\}, \{9\},
 - To perform the union operation, we replace sets x and y by \(x \cup y\)

- **Find(x)** – return the name of the set containing x.
 - Given sets: \{3, 5, 7, 1, 6\}, \{4, 2, 8\}, \{9\},
 - **Find(1)** returns 5
 - **Find(4)** returns 8

- We can do **Union** in constant time.
- We can get **Find** to be **amortized** constant time
 (worst case \(O(\log n)\) for an individual **Find** operation).
Implementing the DS ADT

- n elements,
 Total Cost of: m finds, $\leq n-1$ unions

- Target complexity: $O(m+n)$
 \textit{i.e.} $O(1)$ amortized

- $O(1)$ worst-case for find as well as union would be great, but…

 \textit{Known result:} both find and union \textit{cannot} be done in worst-case $O(1)$ time
Data Structure for the DS ADT

- **Observation**: trees let us find many elements given one root...

- **Idea**: if we reverse the pointers (make them point up from child to parent), we can find a single root from many elements...

- **Idea**: Use one tree for each equivalence class. The name of the class is the tree root.
Up-Tree for Disjoint Union/Find

Initial state: 1 2 3 4 5 6 7

After several Unions:

Roots are the names of each set.
Find Operation

\[\text{Find}(x) \text{ - follow } x \text{ to the root and return the root} \]

![Diagram showing the process of finding an element](image)

Find(6) = 7
Union Operation

Union(x,y) - assuming x and y are roots, point y to x.
Simple Implementation

- Array of indices

<table>
<thead>
<tr>
<th>up</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Up[x] = 0 means x is a root.
Implementation

```c
int Find(int x) {
    while (up[x] != 0) {
        x = up[x];
    }
    return x;
}
```

```c
void Union(int x, int y) {
    up[y] = x;
}
```

runtime for Union(): $\mathcal{O}(1)$

runtime for Find(): $\mathcal{O}(n)$

runtime for m Finds and $n-1$ Unions:
A Bad Case

Union(x,y) – “point y to x”

Union(2,1)

Union(3,2)
 :
 :
 Union(n,n-1)

Find(1) n steps!!

11/30/2016
Now this doesn’t look good 😞
Can we do better? Yes!

1. Improve union so that find only takes $\Theta(\log n)$
 - Union-by-size
 - Reduces complexity to $\Theta(m \log n + n)$

2. Improve find so that it becomes even better!
 - Path compression
 - Reduces complexity to almost $\Theta(m + n)$
Weighted Union/Union by Size

- Weighted Union
 - Always point the *smaller* (total # of nodes) tree to the root of the larger tree
Example Again

\[
\begin{align*}
1 & \quad 2 & \quad 3 & \quad \ldots & \quad n \\
& \quad 2 & \quad 3 & \quad \ldots & \quad n \\
1 & \quad 2 & \quad \ldots & \quad n \\
& \quad 2 & \quad 3 & \quad \ldots & \quad n \\
1 & \quad 3 & \quad \ldots & \quad n \\
\end{align*}
\]

W-Union(2,1)

W-Union(3,2)

\vdots

W-Union(n,2)

Find(1) constant time
Analysis of Weighted Union

With weighted union an up-tree of height \(h \) has weight \textit{at least} \(2^h \).

- Proof by induction
 - **Basis**: \(h = 0 \). The up-tree has one node, \(2^0 = 1 \)
 - **Inductive step**: Assume true for all \(h' < h \).

\[
\text{Minimum weight up-tree of height } h \text{ formed by weighted unions}
\]

\[
W(T_1) \geq W(T_2) \geq 2^{h-1}
\]

\[
W(T) \geq 2^{h-1} + 2^{h-1} = 2^h
\]
Analysis of Weighted Union (cont)

Let T be an up-tree of weight n formed by weighted union. Let h be its height.

\[
\begin{align*}
n & \geq 2^n \\
\log_2 n & \geq h
\end{align*}
\]

- Find(x) in tree T takes $O(\log n)$ time.
 - Can we do better?
Worst Case for Weighted Union

n/2 Weighted Unions

n/4 Weighted Unions
Example of Worst Cast (cont’)

After \(\frac{n}{2} + \frac{n}{4} + \ldots + 1 \) Weighted Unions:

If there are \(n = 2^k \) nodes then the longest path from leaf to root has length \(k \).
Array Implementation

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>up</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>-1</td>
</tr>
<tr>
<td>weight</td>
<td>2</td>
<td>1</td>
<td></td>
<td>5</td>
<td></td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Weighted Union

\[W\text{-Union}(i,j : \text{index}) \{
\quad \text{//i and j are roots}
\quad \text{wi := weight}[i];
\quad \text{wj := weight}[j];
\quad \text{if wi < wj then}
\quad \quad \text{up}[i] := j;
\quad \quad \text{weight}[j] := \text{wi} + \text{wj};
\quad \text{else}
\quad \quad \text{up}[j] := i;
\quad \quad \text{weight}[i] := \text{wi} + \text{wj};
\}\]

\begin{align*}
\text{new runtime for Union:} \\
\text{runtime for m finds and n-1 unions} =
\end{align*}
Nifty Storage Trick

- Use the same array representation as before

- Instead of storing -1 for the root, simply store $-\text{size}$

[Read section 8.4]
How about Union-by-height?

- Can still guarantee $O(\log n)$ worst case depth

 Left as an exercise!

- Problem: Union-by-height doesn’t combine very well with the new find optimization technique we’ll see next
Path Compression

- On a Find operation point all the nodes on the search path directly to the root.
Path Compression

- On a Find operation point all the nodes on the search path directly to the root.
Draw the result of Find(e):
Self-Adjustment Works
Path Compression Find

PC-Find(i : index) {
 r := i;
 while up[r] ≠ -1 do //find root//
 r := up[r];
 if i ≠ r then //compress path//
 k := up[i];
 while k ≠ r do
 up[i] := r;
 i := k;
 k := up[k]
 return(r)
 }

Path Compression: Code

```c
int Find(Object x) {
    // x had better be in
    // the set!
    int xID = hTable[x];
    int i = xID;

    // Get the root for
    // this set
    while (up[xID] != -1) {
        xID = up[xID];
    }

    // Change the parent for
    // all nodes along the path
    while(up[i] != -1) {
        temp = up[i];
        up[i] = xID;
        i = temp;
    }

    return xID;
}

(New?) runtime for Find:
Interlude: A Really Slow Function

Ackermann’s function is a really big function \( A(x, y) \) with inverse \( \alpha(x, y) \) which is really small.

How fast does \( \alpha(x, y) \) grow?
\[
\alpha(x, y) = 4 \text{ for } x \text{ far larger than the number of atoms in the universe } (2^{300})
\]

\( \alpha \) shows up in:
- Computation Geometry (surface complexity)
- Combinatorics of sequences
A More Comprehensible Slow Function

\( \log^* x = \text{number of times you need to compute} \log \text{ to bring value down to at most 1} \)

E.g. \( \log^* 2 = 1 \)
\( \log^* 4 = \log^* 2^2 = 2 \)
\( \log^* 16 = \log^* 2^{2^2} = 3 \quad (\log \log \log 16 = 1) \)
\( \log^* 65536 = \log^* 2^{2^{2^2}} = 4 \quad (\log \log \log \log 65536 = 1) \)
\( \log^* 2^{65536} = \ldots \ldots \ldots = 5 \)

Take this: \( \alpha(m,n) \) grows even slower than \( \log^* n \)!!
Complex Complexity of Union-by-Size + Path Compression

Tarjan proved that, with these optimizations, \( p \) union and find operations on a set of \( n \) elements have worst case complexity of \( O(p \cdot \alpha(p, n)) \)

For all practical purposes this is amortized constant time:

\( O(p \cdot 4) \) for \( p \) operations!

• Very complex analysis
Disjoint Union / Find
with Weighted Union and PC

- Worst case time complexity for a W-Union is $O(1)$ and for a PC-Find is $O(\log n)$.
- Time complexity for $m \geq n$ operations on $n$ elements is $O(m \log^* n)$ where $\log^* n$ is a very slow growing function.
  - $\log^* n < 7$ for all reasonable $n$. Essentially constant time per operation!
- Using “ranked union” gives an even better bound theoretically.
Amortized Complexity

- For disjoint union / find with weighted union and path compression.
  - average time per operation is essentially a constant.
  - worst case time for a PC-Find is $O(\log n)$.
- An individual operation can be costly, but over time the average cost per operation is not.
# Draw the UpTree

<table>
<thead>
<tr>
<th>Nodes</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11/30/2016
Draw the UpTree

<table>
<thead>
<tr>
<th>Nodes</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>