CSE 332: Data Structures & Parallelism
Lecture 16: Parallel Prefix, Pack, and Sorting

Ruth Anderson
Autumn 2016
Outline

Done:
- Simple ways to use parallelism for counting, summing, finding
- Analysis of running time and implications of Amdahl’s Law

Now: Clever ways to parallelize more than is intuitively possible
- Parallel prefix:
 - This “key trick” typically underlies surprising parallelization
 - Enables other things like packs (aka filters)
- Parallel sorting: quicksort (not in place) and mergesort
 - Easy to get a little parallelism
 - With cleverness can get a lot
The **prefix-sum problem**

Given `int[]` input, produce `int[]` output where:

\[
\text{output}[i] = \text{input}[0] + \text{input}[1] + \ldots + \text{input}[i]
\]

<table>
<thead>
<tr>
<th>input</th>
<th>6</th>
<th>4</th>
<th>16</th>
<th>10</th>
<th>16</th>
<th>14</th>
<th>2</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>6</td>
<td>10</td>
<td>26</td>
<td>36</td>
<td>52</td>
<td>66</td>
<td>68</td>
<td>76</td>
</tr>
</tbody>
</table>

Sequential can be a CSE142 exam problem:

```java
int[] prefix_sum(int[] input) {
    int[] output = new int[input.length];
    output[0] = input[0];
    for (int i=1; i < input.length; i++)
       output[i] = output[i-1] + input[i];
    return output;
}
```

Does not seem parallelizable

- Work: \(O(n)\), Span: \(O(n)\)
- *This algorithm* is sequential, but a different algorithm has
 Work: \(O(n)\), Span: \(O(\log n)\)
Parallel prefix-sum

- The parallel-prefix algorithm does two passes
 - Each pass has $O(n)$ work and $O(\log n)$ span
 - So in total there is $O(n)$ work and $O(\log n)$ span
 - So like with array summing, parallelism is $n/\log n$
 - An exponential speedup

- First pass builds a tree bottom-up: the “up” pass
- Second pass traverses the tree top-down: the “down” pass
Local bragging

Historical note:

- Original algorithm due to R. Ladner and M. Fischer at UW in 1977
- Richard Ladner joined the UW faculty in 1971 and hasn’t left

1968? 1973? recent
Parallel Prefix: The Up Pass

We build want to build a binary tree where

- Root has sum of the range $[x,y]$
- If a node has sum of $[lo,hi)$ and $hi>lo$,
 - Left child has sum of $[lo,middle)$
 - Right child has sum of $[middle,hi)$
 - A leaf has sum of $[i,i+1)$, which is simply input[i]

It is critical that we actually create the tree as we will need it for the down pass

- We do not need an actual linked structure
- We could use an array as we did with heaps

Analysis of first step: Work = $O(N)$ Span = $O(\log N)$
The algorithm, part 1

Specifically…..

1. Propagate ‘sum’ up: Build a binary tree where
 - Root has sum of input[0]..input[n-1]
 - Each node has sum of input[lo]..input[hi-1]
 • Build up from leaves; parent.sum=left.sum+right.sum
 - A leaf’s sum is just it’s value; input[i]

This is an easy fork-join computation: combine results by actually building a binary tree with all the sums of ranges
 - Tree built bottom-up in parallel
 - Could be more clever; ex. Use an array as tree representation like we did for heaps

Analysis of first step: $O(n)$ work, $O(\log n)$ span

1/07/2016
The (completely non-obvious) idea:
Do an initial pass to gather information, enabling us to do a second pass to get the answer.

First we’ll gather the ‘sum’ for each recursive block.
First pass

For each node, get the sum of all values in its range; propagate sum up from leaves.

Will work like parallel sum, but recording intermediate information.

Input: 6 4 16 10
Output: 16 14 2 8

11/07/2016
The algorithm, part 2

2. Propagate ‘fromleft’ down:
 – Root given a fromLeft of 0
 – Node takes its fromLeft value and
 • Passes its left child the same fromLeft
 • Passes its right child its fromLeft plus its left child’s sum
 (as stored in part 1)
 – At the leaf for array position i,
 output[i]=fromLeft+input[i]

This is an easy fork-join computation: traverse the tree built in step 1
and produce no result (the leaves assign to output)

 – Invariant: fromLeft is sum of elements left of the node’s range

Analysis of first step: \(O(n) \) work, \(O(\log n) \) span

Analysis of second step:

Total for algorithm:
The algorithm, part 2

2. Propagate ‘fromleft’ down:
 – Root given a fromLeft of 0
 – Node takes its fromLeft value and
 • Passes its left child the same fromLeft
 • Passes its right child its fromLeft plus its left child’s sum
 (as stored in part 1)
 – At the leaf for array position i,
 \[\text{output}[i] = \text{fromLeft} + \text{input}[i] \]

This is an easy fork-join computation: traverse the tree built in step 1
and produce no result (the leaves assign to output)

 – Invariant: \text{fromLeft} is sum of elements left of the node’s range

Analysis of first step: \(O(n) \) work, \(O(\log n) \) span
Analysis of second step: \(O(n) \) work, \(O(\log n) \) span
Total for algorithm: \(O(n) \) work, \(O(\log n) \) span
Second pass

Using ‘sum’, get the sum of everything to the left of this range (call it ‘fromleft’); propagate down from root

```
input  output
   6    6
   4    10
  16    26
  10    36
  16    52
  14    66
   2    68
   8    76
```

11/07/2016
Sequential cut-off

Adding a sequential cut-off isn’t too bad:

• **Step One**: Propagating Up the sums:
 – Have a leaf node just hold the sum of a range of values instead of just one array value (Sequentially compute sum for that range)
 – The tree itself will be shallower

• **Step Two**: Propagating Down the `fromLefts`:
 – Have leaf compute prefix sum sequentially over its `[lo,hi]`:

```plaintext
output[lo] = fromLeft + input[lo];
for (i = lo + 1; i < hi; i++)
    output[i] = output[i-1] + input[i]
```
Parallel prefix, generalized

Just as sum-array was the simplest example of a common pattern, prefix-sum illustrates a pattern that arises in many, many problems

- Minimum, maximum of all elements to the left of \(i \)

- Is there an element to the left of \(i \) satisfying some property?

- Count of elements to the left of \(i \) satisfying some property
 - This last one is perfect for an efficient parallel pack...
 - Perfect for building on top of the “parallel prefix trick”
Pack (think “Filter”)

[Non-standard terminology]

Given an array input, produce an array output containing only elements such that \(f(\text{element}) \) is true.

Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
\(f: \text{“is element > 10”} \)
output [17, 11, 13, 19, 24]

Parallelizable?
- Determining whether an element belongs in the output is easy
- But determining where an element belongs in the output is hard; seems to depend on previous results...

\[
\text{for } i=1 \text{ to } n:
\begin{align*}
\quad & \text{if } (\text{input}[i] > 10) \{ \\
\quad & \quad \text{output}[j] = \text{input}[i] \\
\quad & \quad j++
\}
\]

11/07/2016
Parallel Pack = parallel map + parallel prefix + parallel map

1. **Parallel map** to compute a bit-vector for true elements:

 | input | 17, 4, 6, 8, 11, 5, 13, 19, 0, 24 |
 | bits | 1, 0, 0, 0, 1, 0, 1, 1, 0, 1 |

2. **Parallel-prefix sum** on the bit-vector:

 | bitsum | 1, 1, 1, 1, 2, 2, 3, 4, 4, 5 |

3. **Parallel map** to produce the output:

 | output | 17, 11, 13, 19, 24 |

   ```java
   output = new array of size bitsum[n-1]
   FORALL(i=0; i < input.length; i++){
   }
   ```

 11/07/2016
Parallel Pack = parallel map + parallel prefix + parallel map

1. **Parallel map** to compute a bit-vector for true elements:
 - input: [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
 - bits: [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2. **Parallel-prefix sum** on the bit-vector:
 - bitsum: [1, 1, 1, 2, 2, 3, 4, 4, 5]

3. **Parallel map** to produce the output:
 - output: [17, 11, 13, 19, 24]
 - output = new array of size bitsum[n-1]
 - FORALL (i=0; i < input.length; i++){
 if(bits[i]==1)
 output[bitsum[i]-1] = input[i];
 }
Pack comments

- First two steps can be combined into one pass
 - Just using a different base case for the prefix sum
 - No effect on asymptotic complexity

- Can also combine third step into the down pass of the prefix sum
 - Again no effect on asymptotic complexity

- Analysis: $O(n)$ work, $O(\log n)$ span
 - 2 or 3 passes, but 3 is a constant 😊

- Parallelized packs will help us parallelize quicksort...
Sequential Quicksort review

Recall quicksort was sequential, in-place, expected time $O(n \log n)$

Best / expected case work

1. Pick a pivot element $O(1)$
2. Partition all the data into:
 A. The elements less than the pivot
 B. The pivot
 C. The elements greater than the pivot
 O(n)
3. Recursively sort A and C $2T(n/2)$

Recurrence (assuming a good pivot):

$T(0)=T(1)=1$

$T(n)=O(n^2) + 2T(\frac{n}{2})$

Run-time: $O(n \log n)$

How should we parallelize this?
Review: Really common recurrences

Should know how to solve recurrences but also recognize some really common ones:

\[T(n) = \Theta(1) + T(n-1) \] linear
\[T(n) = \Theta(1) + 2T(n/2) \] linear
\[T(n) = \Theta(1) + T(n/2) \] logarithmic
\[T(n) = \Theta(1) + 2T(n-1) \] exponential
\[T(n) = \Theta(n) + T(n-1) \] quadratic
\[T(n) = \Theta(n) + T(n/2) \] linear
\[T(n) = \Theta(n) + 2T(n/2) \] \(O(n \log n)\)

Note big-Oh can also use more than one variable

- Example: can sum all elements of an \(n\)-by-\(m\) matrix in \(O(nm)\)
Parallel Quicksort (version 1)

Best / expected case work
1. Pick a pivot element \(O(1) \)
2. Partition all the data into:
 A. The elements less than the pivot \(O(n) \)
 B. The pivot
 C. The elements greater than the pivot
3. Recursively sort A and C \(2T(n/2) \)

First: Do the two recursive calls in parallel
- Work: \(O(n / \log n) \)
- Span: now recurrence takes the form:

\[
\text{Span: } T(n) = O(n) + T\left(\frac{n}{2}\right) \\
= O(n)
\]
Parallel Quicksort (version 1) (Soln)

Best / expected case work

1. Pick a pivot element \(O(1) \)
2. Partition all the data into:
 A. The elements less than the pivot \(O(n) \)
 B. The pivot
 C. The elements greater than the pivot
3. Recursively sort A and C \(2T(n/2) \)

First: Do the two recursive calls in parallel

- **Work**: unchanged of course, \(O(n \log n) \)
- **Span**: now recurrence takes the form:
 \[
 T(n) = O(n) + 1T(n/2) = O(n)
 \]
- **Span**: \(O(n) \)
- So parallelism (i.e., work/span) is \(O(\log n) \)
Doing better

- $O(\log n)$ speed-up with an infinite number of processors is okay, but a bit underwhelming
 - Sort 10^9 elements 30 times faster

- Google searches strongly suggest quicksort cannot do better because the partition cannot be parallelized
 - The Internet has been known to be wrong 😊
 - But we need auxiliary storage (no longer in place)
 - In practice, constant factors may make it not worth it, but remember Amdahl’s Law…(exposing parallelism is important!)

- Already have everything we need to parallelize the partition…
Parallel partition (not in place)

Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

• This is just two packs!
 – We know a pack is $O(n)$ work, $O(\log n)$ span
 – Pack elements less than pivot into left side of aux array
 – Pack elements greater than pivot into right side of aux array
 – Put pivot between them and recursively sort
 – With a little more cleverness, can do both packs at once but
 no effect on asymptotic complexity

• With $\underline{}$ span for partition, the total span for quicksort is

11/07/2016
Parallel partition (not in place) (Soln)

Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

- This is just two packs!
 - We know a pack is $O(n)$ work, $O(\log n)$ span
 - Pack elements less than pivot into left side of aux array
 - Pack elements greater than pivot into right side of aux array
 - Put pivot between them and recursively sort
 - With a little more cleverness, can do both packs at once but no effect on asymptotic complexity

- With $O(\log n)$ span for partition, the total span for quicksort is
 \[T(n) = O(\log n) + 1T(n/2) = O(\log^2 n) \]
Parallel Quicksort Example (version 2)

- Step 1: pick pivot as median of three

 8 1 4 9 0 3 5 2 7 6

- Steps 2a and 2c (combinable): pack less than, then pack greater than into a second array
 - Fancy parallel prefix to pull this off (not shown)

 1 4 0 3 5 2
 1 4 0 3 5 2 6 8 9 7

- Step 3: Two recursive sorts in parallel
 - Can sort back into original array (like in mergesort)
Parallelize Mergesort?

Recall mergesort: sequential, not-in-place, worst-case $O(n \log n)$

1. Sort left half and right half
2. Merge results

\[2T(n/2) + O(n) \]

Just like quicksort, doing the two recursive sorts in parallel changes the recurrence for the Span to \(T(n) = O(n) + 1T(n/2) = O(n) \)

- Again, Work is \(O(n \log n) \), and
- parallelism is work/span = \(O(\log n) \)
- To do better, need to parallelize the merge
 - The trick won't use parallel prefix this time…
Parallelizing the merge

Need to merge two sorted subarrays (may not have the same size)

\[
\begin{array}{c}
0 & 1 & 4 & 8 & 9 \\
2 & 3 & 5 & 6 & 7 \\
\end{array}
\]

Idea: Suppose the larger subarray has \(m \) elements. In parallel:
- Merge the first \(m/2 \) elements of the larger half with the “appropriate” elements of the smaller half
- Merge the second \(m/2 \) elements of the larger half with the rest of the smaller half
Parallelizing the merge (in more detail)

Need to merge two *sorted* subarrays (may not have the same size)

Idea: Recursively divide subarrays in half, merge halves in parallel

```
0 4 6 8 9
1 2 3 5 7
```

Suppose the larger subarray has \(m \) elements. In parallel:

- Pick the *median* element of the larger array (here 6) in constant time
- In the other array, use binary search to find the first element greater than or equal to that median (here 7)

Then, in parallel:

- Merge half the larger array (from the median onward) with the upper part of the shorter array
- Merge the lower part of the larger array with the lower part of the shorter array
Example: Parallelizing the Merge

0 4 6 8 9 1 2 3 5 7
Example: Parallelizing the Merge

1. Get median of bigger half: $O(1)$ to compute middle index
Example: Parallelizing the Merge

1. Get median of bigger half: $O(1)$ to compute middle index
2. Find how to split the smaller half at the same value:
 $O(\log n)$ to do binary search on the sorted small half
Example: Parallelizing the Merge

1. Get median of bigger half: $O(1)$ to compute middle index
2. Find how to split the smaller half at the same value: $O(\log n)$ to do binary search on the sorted small half
3. Size of two sub-merges conceptually splits output array: $O(1)$
Example: Parallelizing the Merge

1. Get median of bigger half: \(O(1)\) to compute middle index
2. Find how to split the smaller half at the same value: \(O(\log n)\) to do binary search on the sorted small half
3. Two sub-merges conceptually splits output array: \(O(1)\)
4. Do two submerges in parallel
Example: Parallelizing the Merge

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

merge

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

merge

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

merge

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

merge

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

merge

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

merge

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

merge

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

11/07/2016
Example: Parallelizing the Merge

When we do each merge in parallel:
- we split the bigger array in half
- use binary search to split the smaller array
- And in base case we do the copy
Parallel Merge Pseudocode

```
Merge(arr[], left1, left2, right1, right2, out[], out1, out2)
    int leftSize = left2 - left1
    int rightSize = right2 - right1
    // Assert: out2 - out1 = leftSize + rightSize
    // We will assume leftSize > rightSize without loss of generality

    if (leftSize + rightSize < CUTOFF)
        sequential merge and copy into out[out1..out2]

    int mid = (left2 - left1)/2
    binarySearch arr[right1..right2] to find j such that
       arr[j] <= arr[mid] <= arr[j+1]

    Merge(arr[], left1, mid, right1, j, out[], out1, out1+mid+j)
    Merge(arr[], mid+1, left2, j+1, right2, out[], out1+mid+j+1, out2)
```
Analysis

- **Sequential** mergesort:
 \[T(n) = 2T(n/2) + O(n) \quad \text{which is} \quad O(n \log n) \]

- Doing the two recursive calls in parallel but a **sequential merge**:
 - **Work**: same as sequential
 - **Span**: \(T(n) = 1T(n/2) + O(n) \) which is \(O(n) \)

- **Parallel merge** makes work and span harder to compute...
 - Each merge step does an extra \(O(\log n) \) binary search to find how to split the smaller subarray
 - To merge \(n \) elements total, do two smaller merges of possibly different sizes
 - But worst-case split is \((3/4)n \) and \((1/4)n \)
 - Happens when the two subarrays are of the same size \((n/2) \)
 and the "smaller" subarray splits into two pieces of the most uneven sizes possible: one of size \(n/2 \), one of size 0

<table>
<thead>
<tr>
<th>"larger"</th>
<th>"smaller"</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 4 6 8</td>
<td>1 2 3 5</td>
</tr>
</tbody>
</table>
Analysis continued

For just a parallel \textit{merge} of \(n \) elements:

- \textbf{Work} is \(T(n) = T(3n/4) + T(n/4) + O(\log n) \) which is \(O(n) \)
- \textbf{Span} is \(T(n) = T(3n/4) + O(\log n) \), which is \(O(\log^2 n) \)
- (neither bound is immediately obvious, but “trust me”)

So for \textit{mergesort} with \textit{parallel merge} overall:

- \textbf{Work} is \(T(n) = 2T(n/2) + O(n) \), which is \(O(n \log n) \)
- \textbf{Span} is \(T(n) = 1T(n/2) + O(\log^2 n) \) which is \(O(\log^3 n) \)

So parallelism (work / span) is \(O(n / \log^2 n) \)
- Not quite as good as quicksort’s \(O(n / \log n) \)
 - But (unlike Quicksort) this is a worst-case guarantee
- And as always this is just the asymptotic result