CSE 332: Data Structures & Parallelism
Lecture 15: Analysis of Fork-Join Parallel Programs

Ruth Anderson
Autumn 2016
Outline

Done:
• How to use fork and join to write a parallel algorithm
• Why using divide-and-conquer with lots of small tasks is best
 – Combines results in parallel
• Some Java and ForkJoin Framework specifics
 – More pragmatics (e.g., installation) in separate notes

Now:
• More examples of simple parallel programs
• Arrays & balanced trees support parallelism better than linked lists
• Asymptotic analysis for fork-join parallelism
• Amdahl’s Law
What else looks like this?

Saw summing an array went from $O(n)$ sequential to $O(\log n)$ parallel (assuming a lot of processors and very large n)
 - Exponential speed-up in theory ($n / \log n$ grows exponentially)

• Anything that can use results from two halves and merge them in $O(1)$ time has the same property…
Extending Parallel Sum

- We can tweak the ‘parallel sum’ algorithm to do all kinds of things; just specify 2 parts (usually)
 - Describe how to compute the result at the ‘cut-off’
 (Sum: Iterate through sequentially and add them up)
 - Describe how to merge results
 (Sum: Just add ‘left’ and ‘right’ results)
Examples

- Parallelization (for some algorithms)
 - Describe how to compute result at the ‘cut-off’
 - Describe how to merge results
- How would we do the following (assuming data is given as an array)?
 1. Maximum or minimum element
 2. Is there an element satisfying some property (e.g., is there a 17)?
 3. Left-most element satisfying some property (e.g., first 17)
 4. Smallest rectangle encompassing a number of points
 5. Counts; for example, number of strings that start with a vowel
 6. Are these elements in sorted order?
Reductions

- This class of computations are called reductions
 - We 'reduce' a large array of data to a single item
 - Produce single answer from collection via an associative operator
 - Examples: max, count, leftmost, rightmost, sum, product, ...

- Note: Recursive results don't have to be single numbers or strings. They can be arrays or objects with multiple fields.
 - Example: create a Histogram of test results from a much larger array of actual test results

- While many can be parallelized due to nice properties like associativity of addition, some things are inherently sequential
 - How we process arr[i] may depend entirely on the result of processing arr[i-1]

\[
\text{for } i = 1 \text{ to } n:\n\text{arr[i] = arr[i-1] + fun();}
\]
Even easier: Maps (Data Parallelism)

- A map operates on each element of a collection independently to create a new collection of the same size
 - No combining results
 - For arrays, this is so trivial some hardware has direct support

- Canonical example: Vector addition

```java
int[] vector_add(int[] arr1, int[] arr2){
    assert (arr1.length == arr2.length);
    result = new int[arr1.length];
    FORALL(i=0; i < arr1.length; i++) {
        result[i] = arr1[i] + arr2[i];
    }
    return result;
}
```
Maps in ForkJoin Framework

class VecAdd extends RecursiveAction {
 int lo; int hi; int[] res; int[] arr1; int[] arr2;
 VecAdd(int l, int h, int[] r, int[] a1, int[] a2) {
 ...
 }
 protected void compute() {
 if(hi - lo < SEQUENTIAL_CUTOFF) {
 for(int i = lo; i < hi; i++)
 res[i] = arr1[i] + arr2[i];
 } else {
 int mid = (hi + lo) / 2;
 VecAdd left = new VecAdd(lo, mid, res, arr1, arr2);
 VecAdd right = new VecAdd(mid, hi, res, arr1, arr2);
 left.fork();
 right.compute();
 left.join();
 }
 }
}

static final ForkJoinPool POOL = new ForkJoinPool();
int[] add(int[] arr1, int[] arr2) {
 assert (arr1.length == arr2.length);
 int[] ans = new int[arr1.length];
 POOL.invoke(new VecAdd(0, arr1.length, ans, arr1, arr2);
 return ans;
}

11/04/2016
Maps and reductions: the “workhorses” of parallel programming

- By far the two most important and common patterns
 - Two more-advanced patterns in next lecture

- Learn to recognize when an algorithm can be written in terms of maps and reductions

- Use maps and reductions to describe (parallel) algorithms

- Programming them becomes “trivial” with a little practice
 - Exactly like sequential for-loops seem second-nature
Map vs reduce in ForkJoin framework

- In our examples:
 - Reduce:
 - Parallel-sum extended RecursiveTask
 - Result was returned from compute()
 - Map:
 - Class extended was RecursiveAction
 - Nothing returned from compute()
 - In the above code, the ‘answer’ array was passed in as a parameter
- Doesn’t have to be this way
 - Map can use RecursiveTask to, say, return an array
 - Reduce could use RecursiveAction; depending on what you’re passing back via RecursiveTask, could store it as a class variable and access it via ‘left’ or ‘right’ when done
Digression: MapReduce on clusters

- You may have heard of Google’s “map/reduce”
 - Or the open-source version Hadoop

- Idea: Perform maps/reduces on data using many machines
 - The system takes care of distributing the data and managing fault tolerance
 - You just write code to map one element and reduce elements to a combined result

- Separates how to do recursive divide-and-conquer from what computation to perform
 - Old idea in higher-order functional programming transferred to large-scale distributed computing
 - Complementary approach to declarative queries for databases
Trees

- Maps and reductions work just fine on balanced trees
 - Divide-and-conquer each child rather than array sub-ranges
 - Correct for unbalanced trees, but won’t get much speed-up

- Example: minimum element in an *unsorted* but balanced binary tree in $O(\log n)$ time given enough processors

- How to do the sequential cut-off?
 - Store number-of-descendants at each node (easy to maintain)
 - Or could approximate it with, e.g., AVL-tree height
Linked lists

- Can you parallelize maps or reduces over linked lists?
 - Example: Increment all elements of a linked list
 - Example: Sum all elements of a linked list
 - Parallelism still beneficial for expensive per-element operations

- Once again, data structures matter!

- For parallelism, balanced trees generally better than lists so that we can get to all the data exponentially faster $O(\log n)$ vs. $O(n)$
 - Trees have the same flexibility as lists compared to arrays (in terms of say inserting an item in the middle of the list)
Analyzing algorithms

- How to measure efficiency?
 - Want asymptotic bounds
 - Want to analyze the algorithm without regard to a specific number of processors
 - The key “magic” of the ForkJoin Framework is getting expected run-time performance asymptotically optimal for the available number of processors
 - So we can analyze algorithms assuming this guarantee
Work and Span

Let T_P be the running time if there are P processors available.

Two key measures of run-time:

- **Work**: How long it would take 1 processor = T_1
 - Just “sequentialize” the recursive forking
 - Cumulative work that all processors must complete

- **Span**: How long it would take infinity processors = T_∞
 - The hypothetical ideal for parallelization
 - This is the longest “dependence chain” in the computation
 - Example: $O(\log n)$ for summing an array
 - Notice in this example having > $n/2$ processors is no additional help
 - Also called “critical path length” or “computational depth”
The DAG

- A program execution using fork and join can be seen as a DAG
 - **Nodes**: Pieces of work
 - **Edges**: Source must finish before destination starts

- A fork “ends a node” and makes two outgoing edges
 - New thread
 - Continuation of current thread

- A join “ends a node” and makes a node with two incoming edges
 - Node just ended
 - Last node of thread joined on
Our simple examples

- fork and join are very flexible, but divide-and-conquer maps and reductions use them in a very basic way:
 - A tree on top of an upside-down tree
Our simple examples, in more detail

Our fork and join frequently look like this:

In this context, the span (T_∞) is:

- The longest dependence-chain; longest 'branch' in parallel 'tree'
- Example: $O(\log n)$ for summing an array; we halve the data down to our cut-off, then add back together; $O(\log n)$ steps, $O(1)$ time for each
- Also called "critical path length" or "computational depth"
More interesting DAGs?

- The DAGs are not always this simple

- Example:
 - Suppose combining two results might be expensive enough that we want to parallelize each one
 - Then each node in the inverted tree on the previous slide would itself expand into another set of nodes for that parallel computation
Connecting to performance

- Recall: $T_p = \text{running time if there are P processors available}$

- Work = $T_1 = \text{sum of run-time of all nodes in the DAG}$
 - That lonely processor does everything
 - Any topological sort is a legal execution
 - $O(n)$ for simple maps and reductions

- Span = $T_\infty = \text{sum of run-time of all nodes on the most-expensive path in the DAG}$
 - Note: costs are on the nodes not the edges
 - Our infinite army can do everything that is ready to be done, but still has to wait for earlier results
 - $O(\log n)$ for simple maps and reductions
Definitions

A couple more terms:

- **Speed-up** on \(P \) processors: \(\frac{T_1}{T_p} \)
- If speed-up is \(P \) as we vary \(P \), we call it **perfect linear speed-up**
 - Perfect linear speed-up means doubling \(P \) halves running time
 - Usually our goal; hard to get in practice

- **Parallelism** is the maximum possible speed-up: \(\frac{T_1}{T_\infty} \)
 - At some point, adding processors won't help
 - What that point is depends on the span

Parallel algorithms is about decreasing span without increasing work too much

\[
\frac{T_1}{T_\infty} = \frac{100}{5} = 20 \times \text{Max Possible Speedup}
\]

\(T_\omega = 5 \text{ sec} \quad T_4 = 2.5 \text{ sec} \quad T_1 = 100 \text{ sec} \)
Optimal T_P: Thanks ForkJoin library!

- So we know T_1 and T_∞ but we want T_P (e.g., $P=4$)

- Ignoring memory-hierarchy issues (caching), T_P can’t beat
 - $\frac{T_1}{P}$ why not? This is perfect linear speedup on P pros!
 - T_∞ why not? This is the best we can do with the most processors we could possibly make use of.

- So an asymptotically optimal execution would be:
 \[T_P = O\left(\frac{T_1}{P} + T_\infty\right) \]
 - First term dominates for small P, second for large P

- The ForkJoin Framework gives an expected-time guarantee of asymptotically optimal!
 - Expected time because it flips coins when scheduling
 - How? For an advanced course (few need to know)
 - Guarantee requires a few assumptions about your code…
Division of responsibility

- Our job as ForkJoin Framework users:
 - Pick a good algorithm, write a program
 - When run, program creates a DAG of things to do
 - Make all the nodes a small-ish and approximately equal amount of work

- The framework-writer’s job:
 - Assign work to available processors to avoid idling
 - Let framework-user ignore all scheduling issues
 - Keep constant factors low
 - Give the expected-time optimal guarantee assuming framework-user did his/her job

\[T_p = O(T_1 / P + T_\infty) \]
Examples

\[T_p = O((T_1/P) + T_\infty) \]

- In the algorithms seen so far (e.g., sum an array):
 - \(T_1 = O(n) \)
 - \(T_\infty = O(\log n) \)
 - So expect (ignoring overheads): \(T_p = O(n/P + \log n) \)

- Suppose instead:
 - \(T_1 = O(n^2) \)
 - \(T_\infty = O(n) \)
 - So expect (ignoring overheads): \(T_p = O(n^2/P + n) \)
Amdahl’s Law (mostly bad news)

• So far: talked about a parallel program in terms of work and span

• In practice, it’s common that your program has:
 a) parts that parallelize well:
 – Such as maps/reduces over arrays and trees
 b) …and parts that don’t parallelize at all:
 – Such as reading a linked list, getting input, or just doing computations where each step needs the results of previous step

• These unparallelized parts can turn out to be a big bottleneck
Amdahl’s Law (mostly bad news)

Let the *work* (time to run on 1 processor) be 1 unit time

Let S be the portion of the execution that can’t be parallelized

Then: \[T_1 = S + (1-S) = 1 \]

Suppose we get perfect linear speedup on the parallel portion

Then: \[T_P = S + (1-S)/P \]

So the overall speedup with P processors is (Amdahl’s Law):

\[\frac{T_1}{T_P} = 1 / (S + (1-S)/P) \]

And the parallelism (infinite processors) is:

\[\frac{T_1}{T_\infty} = 1 / S \]
Amdahl’s Law Example

Suppose: \(T_1 = S + (1 - S) = 1 \) (aka total program execution time)

\[
T_1 = \frac{1}{3} + \frac{2}{3} = 1
\]

\[
T_1 = 33 \text{ sec} + 67 \text{ sec} = 100 \text{ sec}
\]

Time on P processors: \(T_P = S + (1 - S)/P \)

So:

\[
T_P = 33 \text{ sec} + (67 \text{ sec})/P
\]

\[
T_3 = 33 \text{ sec} + (67 \text{ sec})/3 = \frac{33 + 20}{3} \approx 53 \text{ sec}
\]

\[
T_6 = 33 + 10 = 43 \text{ sec}
\]

\[
T_{67} = 33 + 1 = 34 \text{ sec}
\]

\[
T_{\infty} = 33 + 0 = 33 \text{ sec}
\]

\[
\text{Speedup} = \frac{T_1}{T_P} = \frac{100}{1} = 100 \approx 3 \times \text{speedup}
\]

\[
\text{Parallelism} = \frac{T_1}{T_{\infty}} = \frac{100}{33} \approx 3 \times \text{speedup}
\]

(max possible speedup)
Why such bad news?

\[
\frac{T_1}{T_p} = \frac{1}{S + (1-S)/P} \quad \frac{T_1}{T_\infty} = \frac{1}{S}
\]

- Suppose 33\% of a program is sequential
 - Then a billion processors won’t give a speedup over 3!!!
- No matter how many processors you use, your speedup is bounded by the sequential portion of the program.
The future and Amdahl’s Law

Speedup: \(T_{1} / T_{P} = 1 / (S + (1-S)/P) \)

Max Parallelism: \(T_{1} / T_{\infty} = 1 / S \)

- Suppose you miss the good old days (1980-2005) where 12ish years was long enough to get 100x speedup
 - Now suppose in 12 years, clock speed is the same but you get 256 processors instead of 1
 - What portion of the program must be parallelizable to get 100x speedup?
The future and Amdahl’s Law

Speedup: \[\frac{T_1}{T_P} = 1 / (S + (1-S)/P) \]

Max Parallelism: \[\frac{T_1}{T_\infty} = 1 / S \]

- Suppose you miss the good old days (1980-2005) where 12ish years was long enough to get 100x speedup
 - Now suppose in 12 years, clock speed is the same but you get 256 processors instead of 1
 - What portion of the program must be parallelizable to get 100x speedup?

For 256 processors to get at least 100x speedup, we need

\[100 \leq 1 / (S + (1-S)/256) \]

Which means \(S \leq .0061 \) (i.e., 99.4% must be parallelizable)
Plots you have to see

1. Assume 256 processors
 - x-axis: sequential portion S, ranging from .01 to .25
 - y-axis: speedup T_1 / T_P (will go down as S increases)

2. Assume $S = .01$ or .1 or .25 (three separate lines)
 - x-axis: number of processors P, ranging from 2 to 32
 - y-axis: speedup T_1 / T_P (will go up as P increases)

Do this as a homework problem! Try this out!
 - Chance to use a spreadsheet or other graphing program
 - Compare against your intuition
 - A picture is worth 1000 words, especially if you made it
All is not lost

Amdahl’s Law is a bummer!
 – Unparallelized parts become a bottleneck very quickly
 – But it doesn’t mean additional processors are worthless

• We can find new parallel algorithms
 – Some things that seem entirely sequential turn out to be parallelizable
 – Eg. How can we parallelize the following?
 • Take an array of numbers, return the ‘running sum’ array:

<table>
<thead>
<tr>
<th>input</th>
<th>6</th>
<th>4</th>
<th>16</th>
<th>10</th>
<th>16</th>
<th>14</th>
<th>2</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>6</td>
<td>10</td>
<td>26</td>
<td>36</td>
<td>52</td>
<td>66</td>
<td>68</td>
<td>76</td>
</tr>
</tbody>
</table>

 – At a glance, not sure; we’ll explore this shortly
• We can also change the problem we’re solving or do new things
 – Example: Video games use tons of parallel processors
 • They are not rendering 10-year-old graphics faster
 • They are rendering richer environments and more beautiful (terrible?) monsters

11/04/2016
Moore and Amdahl

- Moore’s “Law” is an observation about the progress of the semiconductor industry
 - Transistor density doubles roughly every 18 months
- Amdahl’s Law is a mathematical theorem
 - Diminishing returns of adding more processors
- Both are incredibly important in designing computer systems