CSE 332: Data Structures & Parallelism
Lecture 13: Beyond Comparison Sorting

Ruth Anderson
Autumn 2016
Today

• Sorting
 – Comparison sorting
 – Beyond comparison sorting
The Big Picture

Simple algorithms: $O(n^2)$
- Insertion sort
- Selection sort
- Shell sort
- ...

Fancier algorithms: $O(n \log n)$
- Heap sort
- Merge sort
- Quick sort (avg)
- ...

Comparison lower bound: $\Omega(n \log n)$

Specialized algorithms: $O(n)$
- Bucket sort
- Radix sort
- ...

Handling huge data sets
- External sorting
How fast can we sort?

- Heapsort & mergesort have $O(n \log n)$ worst-case running time.
- Quicksort has $O(n \log n)$ average-case running times.
- These bounds are all tight, actually $\Theta(n \log n)$.
- So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as $O(n)$ or $O(n \log \log n)$.
 - Instead: prove that this is impossible.
 - Assuming our comparison model: The only operation an algorithm can perform on data items is a 2-element comparison.
A Different View of Sorting

• Assume we have \(n \) elements to sort
 – And for simplicity, none are equal (no duplicates)

• How many \textit{permutations} (possible orderings) of the elements?

• Example, \(n=3 \),
A Different View of Sorting

• Assume we have \(n \) elements to sort
 – And for simplicity, none are equal (no duplicates)

• How many permutations (possible orderings) of the elements?

• Example, \(n=3 \), six possibilities
 a\([0]\)<a\([1]\)<a\([2]\) a\([0]\)<a\([2]\)<a\([1]\) a\([1]\)<a\([0]\)<a\([2]\)
 a\([1]\)<a\([2]\)<a\([0]\) a\([2]\)<a\([0]\)<a\([1]\) a\([2]\)<a\([1]\)<a\([0]\)

• In general, \(n \) choices for least element, then \(n-1 \) for next, then \(n-2 \) for next, …
 – \(n(n-1)(n-2)\ldots(2)(1) = n! \) possible orderings
Describing every comparison sort

• A different way of thinking of sorting is that the sorting algorithm has to “find” the right answer among the $n!$ possible answers
 – Starts “knowing nothing”, “anything is possible”
 – Gains information with each comparison, eliminating some possibilities
 • Intuition: At best, each comparison can eliminate half of the remaining possibilities
 – In the end narrows down to a single possibility
Counting Comparisons

• Don’t know what the algorithm is, but it cannot make progress without doing comparisons
 – Eventually does a first comparison “is \(a < b \) ?"
 – Can use the result to decide what second comparison to do
 – Etc.: comparison \(k \) can be chosen based on first \(k-1 \) results

• What is the first comparison in:
 – Selection Sort?
 – Insertion Sort?
 – Quicksort?
 – Mergesort?
Counting Comparisons

• Don’t know what the algorithm is, but it cannot make progress without doing comparisons
 – Eventually does a first comparison “is $a < b$?"
 – Can use the result to decide what second comparison to do
 – Etc.: comparison k can be chosen based on first $k-1$ results

• Can represent this process as a decision tree
 – Nodes contain “set of remaining possibilities”
 – At root, anything is possible; no option eliminated
 – Edges are “answers from a comparison”
 – The algorithm does not actually build the tree; it’s what our *proof* uses to represent “the most the algorithm could know so far” as the algorithm progresses
One Decision Tree for $n=3$

- The leaves contain all the possible orderings of a, b, c
- A different algorithm would lead to a different tree
Example if $a < c < b$

possible orders

actual order
What the decision tree tells us

- A binary tree because each comparison has 2 outcomes
 - Perform only comparisons between 2 elements; binary result
 - Ex: Is a<b? Yes or no?
 - We assume no duplicate elements
 - Assume algorithm doesn’t ask redundant questions
- Because any data is possible, any algorithm needs to ask enough questions to produce all n! answers
 - Each answer is a different leaf
 - So the tree must be big enough to have n! leaves
 - Running any algorithm on any input will at best correspond to a root-to-leaf path in some decision tree with n! leaves
 - So no algorithm can have worst-case running time better than the height of a tree with n! leaves
- Worst-case number-of-comparisons for an algorithm is an input leading to a longest path in algorithm’s decision tree
Where are we

Proven: No comparison sort can have worst-case running time better than: the height of a binary tree with $n!$ leaves
- Turns out average-case is same asymptotically
- A comparison sort could be worse than this height, but it cannot be better
- Fine, how tall is a binary tree with $n!$ leaves?

Now: Show that a binary tree with $n!$ leaves has height $\Omega(n \log n)$
- That is, $n \log n$ is the lower bound, the height must be at least this, could be more, (in other words your comparison sorting algorithm could take longer than this, but it won’t be faster)
- Factorial function grows very quickly

Then we’ll conclude that: (Comparison) Sorting is $\Omega(n \log n)$
- This is an amazing computer-science result: proves all the clever programming in the world can’t sort in linear time!
Lower bound on Height

• A binary tree of height h has at most how many leaves?
 $L \leq \text{__________________________}$

• A binary tree with L leaves has height at least:
 $h \geq \text{__________________________}$

• The decision tree has how many leaves: _______

• So the decision tree has height:
 $h \geq \text{__________________________}$
Lower bound on height

- The height of a binary tree with L leaves is at least $\log_2 L$.
- So the height of our decision tree, h:

$$h \geq \log_2 (n!)$$

property of binary trees

$$= \log_2 (n^*(n-1)^*(n-2)\ldots(2)(1))$$

definition of factorial

$$= \log_2 n + \log_2 (n-1) + \ldots + \log_2 1$$

property of logarithms

$$\geq \log_2 n + \log_2 (n-1) + \ldots + \log_2 (n/2)$$

keep first $n/2$ terms

$$\geq (n/2) \log_2 (n/2)$$

each of the $n/2$ terms left is $\geq \log_2 (n/2)$

$$= (n/2)(\log_2 n - \log_2 2)$$

property of logarithms

$$= (1/2)n \log_2 n - (1/2)n$$

arithmetic

"$=\Omega(n \log n)$"
The Big Picture

<table>
<thead>
<tr>
<th>Simple algorithms: O(n^2)</th>
<th>Fancier algorithms: O(n log n)</th>
<th>Comparison lower bound: (\Omega(n \log n))</th>
<th>Specialized algorithms: O(n)</th>
<th>Handling huge data sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion sort</td>
<td>Heap sort</td>
<td></td>
<td>Bucket sort</td>
<td>External sorting</td>
</tr>
<tr>
<td>Selection sort</td>
<td>Merge sort</td>
<td></td>
<td>Radix sort</td>
<td></td>
</tr>
<tr>
<td>Shell sort</td>
<td>Quick sort (avg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**How???
- Change the model – assume more than ‘compare(a,b)’
BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range),
 - Create an array of size K, and put each element in its proper bucket (a.k.a. bin)
 - If data is only integers, no need to store more than a count of how many times that bucket has been used
- Output result via linear pass through array of buckets

<table>
<thead>
<tr>
<th>count array</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>K=5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input: (5,1,3,4,3,2,1,1,5,4,5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>output:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analyzing bucket sort

• Overall: $O(n+K)$
 – Linear in n, but also linear in K
 – $\Omega(n \log n)$ lower bound does not apply because this is not a comparison sort

• Good when range, K, is smaller (or not much larger) than n
 – (We don’t spend time doing lots of comparisons of duplicates!)

• Bad when K is much larger than n
 – Wasted space; wasted time during final linear $O(K)$ pass

• For data in addition to integer keys, use list at each bucket
Bucket Sort with Data

- Most real lists aren’t just #’s; we have data
- Each bucket is a list (say, linked list)
- To add to a bucket, place at end O(1) (keep pointer to last element)

Bucket sort illustrates a more general trick: How might you implement a heap for a small range of integer priorities in a similar manner…

<table>
<thead>
<tr>
<th>count array</th>
<th>Rocky V</th>
<th>Harry Potter</th>
<th>Casablanca</th>
<th>Star Wars</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>Rocky V</td>
<td>Star Wars</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>Harry Potter</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>Casablanca</td>
<td>Star Wars</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>Casablanca</td>
<td>Star Wars</td>
</tr>
</tbody>
</table>

Example: Movie ratings: 1=bad,… 5=excellent

Input=

5: Casablanca
3: Harry Potter movies
1: Rocky V
5: Star Wars

Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars

This result is stable; Casablanca still before Star Wars
Radix sort

- Radix = “the base of a number system”
 - Examples will use 10 because we are used to that
 - In implementations use larger numbers
 - For example, for ASCII strings, might use 128
- Idea:
 - Bucket sort on one digit at a time
 - Number of buckets = radix
 - Starting with least significant digit, sort with Bucket Sort
 - Keeping sort stable
 - Do one pass per digit
- Invariant: After k passes, the last k digits are sorted

- Aside: Origins go back to the 1890 U.S. census
Example

Radix = 10

First pass:
1. bucket sort by ones digit
2. Iterate thru and collect into a list
 • List is sorted by first digit

Input: 478
 537
 9
 721
 3
 38
 143
 67

Order now:

721 3
143
537
67
478
38
9

10/31/2016
Example

If we chop off the 100’s place, these #s are sorted.

Second pass:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>721</td>
<td>3</td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td>537</td>
<td>67</td>
<td>478</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>721</td>
<td>537</td>
<td>143</td>
<td></td>
<td></td>
<td>67</td>
<td>478</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Radix = 10

Order was: 721 143 537 67 478 38 9

Order now: 3 9 721 537 38 143 67 478
Example

Radix = 10

Third pass:

stable bucket sort by 100s digit

Only 3 digits: We’re done!

Order now: 3 9 38 67

Order was: 3 9 38 67

10/31/2016
RadixSort

- Input: 126, 328, 636, 341, 416, 131, 328

BucketSort on lsd:

```
  0  1  2  3  4  5  6  7  8  9
```

BucketSort on next-higher digit:

```
  0  1  2  3  4  5  6  7  8  9
```

BucketSort on msd:

```
  0  1  2  3  4  5  6  7  8  9
```
Analysis of Radix Sort

Performance depends on:

• Input size: n
• Number of buckets = Radix: B
 – e.g. Base 10 #: 10; binary #: 2; Alpha-numeric char: 62
• Number of passes = “Digits”: P
 – e.g. Ages of people: 3; Phone #: 10; Person’s name: ?

• Work per pass is 1 bucket sort: _____________
 – Each pass is a Bucket Sort
• Total work is _______________
 – We do ‘P’ passes, each of which is a Bucket Sort
Comparison to Comparison Sorts

Compared to comparison sorts, sometimes a win, but often not

– Example: Strings of English letters up to length 15
 • Approximate run-time: \(15 \times (52 + n)\)
 • This is less than \(n \log n\) only if \(n > 33,000\)
 • Of course, cross-over point depends on constant factors
 of the implementations plus \(P\) and \(B\)
 – And radix sort can have poor locality properties
 – Not really practical for many classes of keys
 • Strings: Lots of buckets
Recap: Features of Sorting Algorithms

In-place
- Sorted items occupy the same space as the original items. (No copying required, only O(1) extra space if any.)

Stable
- Items in input with the same value end up in the same order as when they began.

Examples:
- Merge Sort - not in place, stable
- Quick Sort - in place, not stable
Sorting massive data: External Sorting

Need sorting algorithms that **minimize disk/tape access** time:

- Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
- Mergesort scans linearly through arrays, leading to (relatively) efficient sequential disk access

Basic Idea:

- Load chunk of data into Memory, sort, store this “run” on disk/tape
- Use the Merge routine from Mergesort to merge runs
- Repeat until you have only one run (one sorted chunk)

- Mergesort can leverage multiple disks
- Weiss gives some examples
Sorting Summary

- Simple $O(n^2)$ sorts can be fastest for small n
 - selection sort, insertion sort (latter linear for mostly-sorted)
 - good for “below a cut-off” to help divide-and-conquer sorts
- $O(n \log n)$ sorts
 - heap sort, in-place but not stable nor parallelizable
 - merge sort, not in-place but stable and works as external sort
 - quick sort, in-place but not stable and $O(n^2)$ in worst-case
 - often fastest, but depends on costs of comparisons/copies
- $\Omega(n \log n)$ is worst-case and average lower-bound for sorting by comparisons
- Non-comparison sorts
 - Bucket sort good for small number of key values
 - Radix sort uses fewer buckets and more phases
- Best way to sort? It depends!