CSE 332: Data Structures & Parallelism
Lecture 5: Algorithm Analysis II

Ruth Anderson
Autumn 2016
Today

- Finish up Binary Heaps
- Analyzing Recursive Code
- Solving Recurrences
Analyzing code ("worst case")

Basic operations take "some amount of" constant time
- Arithmetic (fixed-width)
- Assignment
- Access one Java field or array index
- Etc.

(This is an approximation of reality: a very useful "lie".)

<table>
<thead>
<tr>
<th>Consecutive statements</th>
<th>Sum of time of each statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditionals</td>
<td>Time of condition plus time of slower branch</td>
</tr>
<tr>
<td>Loops</td>
<td>Num iterations * time for loop body</td>
</tr>
<tr>
<td>Function Calls</td>
<td>Time of function’s body</td>
</tr>
<tr>
<td>Recursion</td>
<td>Solve recurrence equation</td>
</tr>
</tbody>
</table>
Linear search

Find an integer in a sorted array

// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
 for (int i = 0; i < arr.length; ++i)
 if (arr[i] == k)
 return true;
 return false;
}

Best case: 6 “ish” steps = $O(1)$
Worst case: 5 “ish” * (arr.length) = $O(arr.length)$
Analyzing Recursive Code

- Computing run-times gets interesting with recursion
- Say we want to perform some computation recursively on a list of size n
 - Conceptually, in each recursive call we:
 - Perform some amount of work, call it \(w(n) \)
 - Call the function recursively with a smaller portion of the list
- So, if we do \(w(n) \) work per step, and reduce the problem size in the next recursive call by 1, we do total work:
 \[
 T(n) = w(n) + T(n-1)
 \]
- With some base case, like \(T(1) = 5 = O(1) \)
Example Recursive code: sum array

Recursive:
- Recurrence is some constant amount of work $O(1)$ done n times

```java
int sum(int[] arr){
    return help(arr,0);
}

int help(int[]arr,int i) { 
    if(i==arr.length)
        return 0;
    return arr[i] + help(arr,i+1);
}
```

Each time `help` is called, it does that $O(1)$ amount of work, and then calls `help` again on a problem one less than previous problem size.

Recurrence Relation: $T(n) = O(1) + T(n-1)$
Solving Recurrence Relations

• Say we have the following recurrence relation:

\[T(n) = 6 \text{ “ish”} + T(n-1) \]

\[T(1) = 9 \text{ “ish”} \quad \leftarrow \text{base case} \]

• Now we just need to solve it; that is, reduce it to a closed form.

• Start by writing it out:

\[T(n) = 6 + T(n-1) \]

\[= 6 + 6 + T(n-2) \]

\[= 6 + 6 + 6 + T(n-3) \]

\[= 6 + 6 + 6 + \ldots + 6 + T(1) = 6 + 6 + 6 + \ldots + 6 + 9 \]

\[= 6k + T(n-k) \]

\[= 6k + 9, \text{ where } k \text{ is the # of times we expanded } T() \]

• We expanded it out \(n-1 \) times, so

\[T(n) = 6k + T(n-k) \]

\[= 6(n-1) + T(1) = 6(n-1) + 9 \]

\[= 6n + 3 = O(n) \]

Or When does \(n-k=1? \)
Answer: when \(k=n-1 \)
Binary search

Find an integer in a sorted array

– Can also be done non-recursively but “doesn’t matter” here

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
    return help(arr, k, 0, arr.length);
}

boolean help(int[] arr, int k, int lo, int hi) {
    int mid = (hi + lo) / 2; // i.e., lo + (hi - lo) / 2
    if (lo == hi) return false;
    if (arr[mid] == k) return true;
    if (arr[mid] < k) return help(arr, k, mid + 1, hi);
    else return help(arr, k, lo, mid);
}
```
Binary search

Best case: 9 “ish” steps = $O(1)$

Worst case: $T(n) = 10 \text{ “ish”} + T(n/2)$ where n is $hi-lo$

- $O(\log n)$ where n is `array.length`
- Solve recurrence equation to know that...

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k)
{
    return help(arr, k, 0, arr.length);
}

boolean help(int[] arr, int k, int lo, int hi)
{
    int mid = (hi+lo)/2;
    if(lo==hi) return false;
    if(arr[mid]==k) return true;
    if(arr[mid]< k) return help(arr, k, mid+1, hi);
    else return help(arr, k, lo, mid);
}
```
Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?
 \[T(n) = 10 + T(n/2) \quad T(1) = 15 \]

2. “Expand” the original relation to find an equivalent general expression in terms of the number of expansions.

3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case.
Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?
 – \(T(n) = 10 + T(n/2) \quad T(1) = 15 \)

2. “Expand” the original relation to find an equivalent general expression in terms of the number of expansions.
 – \(T(n) = 10 + 10 + T(n/4) \)
 = \(10 + 10 + 10 + T(n/8) \)
 = …
 = \(10k + T(n/(2^k)) \) (where \(k \) is the number of expansions)

3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case
 – \(n/(2^k) = 1 \) means \(n = 2^k \) means \(k = \log_2 n \)
 – So \(T(n) = 10 \log_2 n + 15 \) (get to base case and do it)
 – So \(T(n) \) is \(O(\log n) \)
sum array again

Two “obviously” linear algorithms: $T(n) = O(1) + T(n-1)$

Iterative:

```java
int sum(int[] arr){
    int ans = 0;
    for(int i=0; i<arr.length; ++i)
        ans += arr[i];
    return ans;
}
```

Recursive:

- Recurrence is $c + c + \ldots + c$ for n times

```java
int sum(int[] arr){
    return help(arr,0);
}
int help(int[]arr,int i) {
    if(i==arr.length)
        return 0;
    return arr[i] + help(arr,i+1);
}
```
What about a *binary* version of sum?

```java
int sum(int[] arr){
    return help(arr,0,arr.length);
}
int help(int[] arr, int lo, int hi) {
    if(lo==hi)    return 0;
    if(lo==hi-1)  return arr[lo];
    int mid = (hi+lo)/2;
    return help(arr,lo,mid) + help(arr,mid,hi);
}
```
What about a **binary** version of sum?

```java
int sum(int[] arr) {
    return help(arr, 0, arr.length);
}

int help(int[] arr, int lo, int hi) {
    if (lo == hi) return 0;
    if (lo == hi - 1) return arr[lo];
    int mid = (hi + lo) / 2;
    return help(arr, lo, mid) + help(arr, mid, hi);
}
```

Recurrence is \(T(n) = O(1) + 2T(n/2) \)
- \(1 + 2 + 4 + 8 + \ldots \) for \(\log n \) times
- \(2^{(\log n)} - 1 \) which is proportional to \(n \) (by definition of logarithm)

Easier explanation: it adds each number once while doing little else

“Obvious”: You can’t do better than \(O(n) \) – have to read whole array
Parallelism teaser

• But suppose we could do two recursive calls at the same time
 – Like having a friend do half the work for you!

```java
int sum(int[] arr) {
    return help(arr, 0, arr.length);
}

int help(int[] arr, int lo, int hi) {
    if (lo == hi) return 0;
    if (lo == hi - 1) return arr[lo];
    int mid = (hi + lo) / 2;
    return help(arr, lo, mid) + help(arr, mid, hi);
}
```

• If you have as many “friends of friends” as needed, the recurrence is now \(T(n) = O(1) + 1 T(n/2) \)
 – \(O(\log n) \) : same recurrence as for find
Really common recurrences

Should know how to solve recurrences but also recognize some really common ones:

\[
T(n) = O(1) + T(n-1) \quad \text{linear}
\]
\[
T(n) = O(1) + 2T(n/2) \quad \text{linear}
\]
\[
T(n) = O(1) + T(n/2) \quad \text{logarithmic}
\]
\[
T(n) = O(1) + 2T(n-1) \quad \text{exponential}
\]
\[
T(n) = O(n) + T(n-1) \quad \text{quadratic}
\]
\[
T(n) = O(n) + T(n/2) \quad \text{linear}
\]
\[
T(n) = O(n) + 2T(n/2) \quad O(n \log n)
\]

Note big-Oh can also use more than one variable
• Example: can sum all elements of an \(n \)-by-\(m \) matrix in \(O(nm) \)