CSE 332: Data Structures & Parallelism

Lecture 5: Algorithm Analysis II

Ruth Anderson
Autumn 2016
Today

- Finish up Binary Heaps
- Analyzing Recursive Code
- Solving Recurrences
Analyzing code ("worst case")

Basic operations take "some amount of" constant time
 - Arithmetic (fixed-width)
 - Assignment
 - Access one Java field or array index
 - Etc.

(This is an approximation of reality: a very useful "ie").

<table>
<thead>
<tr>
<th>Consecutive statements</th>
<th>Sum of time of each statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditionals</td>
<td>Time of condition plus time of slower branch</td>
</tr>
<tr>
<td>Loops</td>
<td>Num iterations * time for loop body</td>
</tr>
<tr>
<td>Function Calls</td>
<td>Time of function's body</td>
</tr>
<tr>
<td>Recursion</td>
<td>Solve recurrence equation</td>
</tr>
</tbody>
</table>

10/07/2016
Linear search

Find an integer in a *sorted* array

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k){
    for(int i=0; i < arr.length; ++i)
        if(arr[i] == k)
            return true;
    return false;
}
```

Best case: 6 “ish” steps = $O(1)$

Worst case: 5 “ish” * (arr.length) = $O(arr.length)$
Analyzing Recursive Code

- Computing run-times gets interesting with recursion
- Say we want to perform some computation recursively on a list of size n
 - Conceptually, in each recursive call we:
 - Perform some amount of work, call it w(n)
 - Call the function recursively with a smaller portion of the list
- So, if we do w(n) work per step, and reduce the problem size in the next recursive call by 1, we do total work:
 \[T(n) = w(n) + T(n-1) \]
- With some base case, like T(1) = O(1)
Example Recursive code: sum array

Recursive:
- Recurrence is some constant amount of work $O(1)$ done n times

```java
int sum(int[] arr){
    return help(arr,0);
}
int help(int[] arr, int i) {
    if(i==arr.length)
        return 0;
    return arr[i] + help(arr, i+1);
}
```

Each time `help` is called, it does that $O(1)$ amount of work, and then calls `help` again on a problem one less than previous problem size.

Recurrence Relation: $T(n) = O(1) + T(n-1)$

10/07/2016
Solving Recurrence Relations

- Say we have the following recurrence relation:
 \[T(n) = 6 \text{ "ish"} + T(n-1) \]
 \[T(1) = 9 \text{ "ish"} \] ← base case

- Now we just need to solve it; that is, reduce it to a closed form.

- Start by writing it out:
 \[T(n) = 6 + T(n-1) \]
 = 6 + 6 + T(n-2)
 = 6 + 6 + 6 + T(n-3)
 = 6 + 6 + 6 + \ldots + T(1)
 = 6 + 6 + 6 + \ldots + 6 + 9
 = 6k + T(n-k)
 = 6k + 9, \text{ where } k \text{ is the # of times we expanded } T()\]

- We expanded it out \(n-1 \) times, so
 \[T(n) = 6k + T(n-k) \]
 = 6(n-1) + T(1) = 6(n-1) + 9
 = 6n + 3 = \(O(n) \)

Or When does \(n-k=1? \)
Answer: when \(k=n-1 \)
Binary search

Best case:

Worst case:

Find an integer in a *sorted* array

- Can also be done non-recursively but "doesn't matter" here

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
    return help(arr, k, 0, arr.length);
}

boolean help(int[] arr, int k, int lo, int hi) {
    int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2
    if(lo==hi) return false;
    if(arr[mid]==k) return true;
    if(arr[mid]<k) return help(arr, k, mid+1, hi);
    else return help(arr, k, lo, mid);
}
```

\[T(1) = O(1) \]

\[T(n) = T\left(\frac{n}{2}\right) + C \]
Binary search

Best case: 9 “ish” steps = $O(1)$
Worst case: $T(n) = 10 “ish” + T(n/2)$ where n is hi-lo
 - $O(\log n)$ where n is array.length
 - Solve recurrence equation to know that...

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
    return help(arr, k, 0, arr.length);
}
boolean help(int[] arr, int k, int lo, int hi) {
    int mid = (hi+lo)/2;
    if(lo==hi) return false;
    if(arr[mid]==k) return true;
    if(arr[mid]< k) return help(arr, k, mid+1, hi);
    else return help(arr, k, lo, mid);
}
```

10/07/2016 9
Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?
 \[T(n) = 10 + T(n/2) \quad T(1) = 15 \]

2. "Expand" the original relation to find an equivalent general expression in terms of the number of expansions.

3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case.
Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?
 - \(T(n) = 10 + T(n/2) \quad T(1) = 15 \)

2. "Expand" the original relation to find an equivalent general expression in terms of the number of expansions.
 - \(T(n) = 10 + 10 + T(n/4) \)
 - \(= 10 + 10 + 10 + T(n/8) \)
 - \(= 10 + 10 + 10 + T(n/2^k) \)
 - \(= 10k + T(n/(2^k)) \) (where \(k \) is the number of expansions)

3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case
 - \(n/(2^k) = 1 \text{ means } n = 2^k \text{ means } k = \log_2 n \)
 - So \(T(n) = 10 \log_2 n + 15 \) (get to base case and do it)
 - So \(T(n) \) is \(O(\log n) \)

"Tree" representing total work for a problem of size \(N = 8 \)
sum array again

Two “obviously” linear algorithms: $T(n) = O(1) + T(n-1)$

Iterative:

```java
int sum(int[] arr){
    int ans = 0;
    for(int i=0; i<arr.length; ++i)
        ans += arr[i];
    return ans;
}
```

Recursive:

- Recurrence is $c + c + \ldots + c$ for n times

```java
int sum(int[] arr){
    return help(arr, 0);
}

int help(int[] arr, int i) {
    if(i==arr.length)
        return 0;
    return arr[i] + help(arr, i+1);
}
```
What about a **binary** version of sum?

```java
int sum(int[] arr){
    return help(arr,0,arr.length);
}
int help(int[] arr, int lo, int hi) {
    if(lo==hi) return 0;
    if(lo==hi-1) return arr[lo];
    int mid = (hi+lo)/2;
    return help(arr,lo,mid) + help(arr,mid,hi);
}
```
What about a *binary* version of sum?

```java
int sum(int[] arr){
    return help(arr,0,arr.length);
}
int help(int[] arr, int lo, int hi) {
    if(lo==hi)    return 0;
    if(lo==hi-1)  return arr[lo];
    int mid = (hi+lo)/2;
    return help(arr,lo,mid) + help(arr,mid,hi);
}
```

Recurrence is $T(n) = O(1) + 2T(n/2)$
- $1 + 2 + 4 + 8 + \ldots$ for $\log n$ times
- $2^{(\log n)} - 1$ which is proportional to n (by definition of logarithm)

Easier explanation: it adds each number once while doing little else

“Obvious”: You can’t do better than $O(n)$ – have to read whole array
Parallelism teaser

- But suppose we could do two recursive calls at the same time
 - Like having a friend do half the work for you!

```java
int sum(int[] arr)
{
    return help(arr, 0, arr.length);
}
int help(int[] arr, int lo, int hi) {
    if(lo==hi) return 0;
    if(lo==hi-1) return arr[lo];
    int mid = (hi+lo)/2;
    return help(arr, lo, mid) + help(arr, mid, hi);
}
```

- If you have as many “friends of friends” as needed, the recurrence is now
 \(T(n) = O(1) + 1T(n/2) \)
 - \(O(\log n) \): same recurrence as for find
Really common recurrences

Should know how to solve recurrences but also recognize some really common ones:

\[
T(n) = O(1) + T(n-1) \quad \text{linear}
\]
\[
T(n) = O(1) + 2T(n/2) \quad \text{linear}
\]
\[
T(n) = O(1) + T(n/2) \quad \text{logarithmic}
\]
\[
T(n) = O(1) + 2T(n-1) \quad \text{exponential}
\]
\[
T(n) = O(n) + T(n-1) \quad \text{quadratic}
\]
\[
T(n) = O(n) + T(n/2) \quad \text{linear}
\]
\[
T(n) = O(n) + 2T(n/2) \quad O(n \log n)
\]

Note big-Oh can also use more than one variable
• Example: can sum all elements of an \(n \)-by-\(m \) matrix in \(O(nm) \)