
Name: _____________________________________ 

Email address (UWNetID): _____________________________________ 

 

 

 

 

CSE 332 Autumn 2016 Final Exam 
(closed book, closed notes, no calculators) 

 

 

 

Instructions: Read the directions for each question carefully before answering. We may give 

partial credit based on the work you write down, so show your work! Use only the data 

structures and algorithms we have discussed in class so far. Writing after time has been called 

will result in a loss of points on your exam. 

 

Note: For questions where you are drawing pictures, please circle your final answer.   

 

You have 1 hour and 50 minutes, work quickly and good luck! 

 

Total:  Time: 1 hr and 50 minutes. 

 

Question Max Points Score 

1 12  

2 12  

3 10  

4 10  

5 14  

6 10  

7 10  

8 11  

9 11  

Total 100  
 



2 of 12 

1) [12 points total] Hash Tables 
For a) and b) below, insert the following elements in this order: 50, 21, 29, 10, 39, 19. For each 

table, TableSize = 10, and you should use the primary hash function h(k) = k%10.  If an item 

cannot be inserted into the table, please indicate this and continue inserting the remaining values.

 

a) Quadratic probing hash table  

 

 

 

0  

1  

2  

3  

4  

5  

6  

7  

8  

9  

 

b) Separate chaining hash table – use a  

linked list for each bucket where the values 

are ordered by increasing value 

 

0  

1  

2  

3  

4  

5  

6  

7  

8  

9  

 

c) What is the load factor in Table b)? 

 

 

 

d) In a sentence or two, describe double hashing. 

 

 

 

 

 

 

e) What is one advantage of double hashing over quadratic probing, be specific. 

 

 

 

 

 

 

f) What is the big-O worst case runtime of a find operation on a table like table b? 

 

 

g) What is the big-O worst case runtime of an Insert in a separate chaining hash table 

containing N elements where each bucket points to an AVL tree? 



  3 of 12 

2) [12 points total] Graphs!  

a)  [2 points] What is the big-O running time of Dijkstra’s algorithm (assuming an 

adjacency list representation) if: 

(i) A priority queue is used? 

 

(ii) An unsorted list is used? 

 

b) [2 points] Which implementation of Dijkstra’s (priority queue vs. unsorted list) is likely 

to be faster if the graph is known to be dense?  Explain your answer in ~one sentence 

for any credit. 

 

 

 

 

c) [2 points] Give a Minimum Spanning Tree (MST) of the graph below by highlighting the 

edges that would be part of the MST. 

 
d) [6 points] For (ii) and (iv) below, you are given a perfect binary tree of height h 

containing n nodes. Your answer should be an exact formula, such as 3/2 log h, or 5  

3
n
, not big-O notation. 

(i) Depth First Search: What is the name of the data structure used in DFS? 

 

(ii) What is the maximum size of that data structure during a DFS ? 

 

 

 

 

 

(iii)Breadth First Search: What is the name of the data structure used in BFS? 

 

(iv) What is the maximum size of that data structure during a BFS ? 

 

 

 

A B 

C 

D 

F 

E 

G 

4 

3 
2 4 

1 

1 

2 

3 
2 

2 1 

5 



4 of 12 

3) [10 points total] More Graphs! 

a) [4 points] Draw a picture of a connected directed graph with 5 nodes that has the largest 

possible number of topological sorts. How many different topological sorts does it have? 

 

 

 

 

 

 

 

 

 

 

 

b) [6 points total]  Given a weighted, undirected graph with |V| nodes, answer the following.  

Assume all weights are non-negative. 

(i) [2 points]  If each edge has weight  w, what can you say about the cost of an MST? 

Your answer should give a lower bound, or an upper bound on the cost of the MST, 

e.g. “the cost of the MST is  2
w+n

”, or “the cost of the MST is  log(w log n)”. 

 

 

 

 

 

 

 

(ii) [2 points]  If the cost of an MST is c, what can you say about the shortest distances 

returned by Dijkstra’s algorithm when run with an arbitrary vertex s as the source? 

You should give a lower bound or an upper bound for the distance between arbitrary 

vertices u and v. 

 

 

 

 

 

 

 

(iii)[2 points] If there exists a Hamiltonian circuit of cost c, then what can you say about the 

cost of the minimum spanning tree ? 

 

 

 

 

 

How Many topo sorts? 



  5 of 12 

 

4) [10 points] Parallel Prefix CountNegatives: 

a) Given the following array as input, perform the parallel prefix algorithm to fill the output 

array with the number of negative values contained in all of the cells to the left 

(including the value contained in that cell) in the input array.  Fill in the values for: negs, 

and fromLeft in the tree below.  Do not use a sequential cutoff.  Note: This is NOT sum! 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Index 0 1 2 3 4 5 6 7 
Input -3 5 -4 -7 2 -8 9 -5 
Output         

 

b) How is the fromLeft value computed for a node in the tree?  Specifically, if you have a 

node with negs & fromLeft computed, how do you compute fromLeft for its left & right 

children (both of which have negs already computed).   

 

Left child’s fromLeft: 

 

 

 

Right child’s fromLeft: 

 

lo:0 

hi:8 

negs: 

fromleft: 
 

lo:0 

hi:4 

negs: 

fromleft: 

 

lo:4 

hi:8 

negs: 

fromleft: 

 

lo:6 

hi:8 

negs: 

fromleft: 

 

lo:4 

hi:6 

negs: 

fromleft: 

 

lo:2 

hi:4 

negs: 

fromleft: 

 

lo:0 

hi:2 

negs: 

fromleft: 

 

l:0 

h:1 

ng: 

fl: 

 

l:1 

h:2 

ng: 

fl: 

 

l:2 

h:3 

ng: 

fl: 

 

l:3 

h:4 

ng: 

fl: 

 

l:4 

h:5 

ng: 

fl: 

 

l:5 

h:6 

ng: 

fl: 

 

l:6 

h:7 

ng: 

fl: 

 

l:7 

h:8 

ng: 

fl: 

 



6 of 12 

 

5) [14 points] In Java using the ForkJoin Framework, write code to solve the following problem: 

 

 • Input: An int k, and an array of ints of size n containing values in the range 0…k-1 

 • Output: the value (between 0 and k-1) occurring most often in the Input array. If there 

is a tie for the most frequently occurring value, return the smallest number. 

For example, if k=7 and input array of size 9 is {0, 2, 5, 2, 6, 5, 4, 5, 2}, the output would be 2. 
 

 Do not employ a sequential cut-off: the base case should process one element.  

(You can assume the input array will contain at least one element.) 

 Assume k is small (e.g. less than 50) 

 Fill in the function findMostCommon below. 

 Give a class definition, FindComTask, on the next page. 

 

You may not use any global data structures or synchronization primitives (locks). 

 
 

import java.util.concurrent.ForkJoinPool; 

import java.util.concurrent.RecursiveTask; 

 
class Main{ 

static final ForkJoinPool fjPool = new ForkJoinPool(); 

 

// Returns the most common value in the array input. 

// Values in input are in the range 0 to k. 

int findMostCommon (int k, int[] input) { 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Please fill in the function above and write your class on the next page.



  7 of 12 

5) (Continued)  Write your class on this page.



8 of 12 

6) [10 points] Concurrency: Once again, we are helping out with the Aviation Management 

System. This time they have a data structure that keeps track of whether there is a flight from one 

airport to another.  If there is a flight from airport x to airport y, then we should be able to 

assume that there is also a flight from airport y to airport x. This information is being kept in an 

array (indexed by unique airport number), where each location in the array points to a list of the 

airport numbers that can be reached from this airport by a single flight (an AirportList). We 

would like to allow as much concurrent access to this data structure as possible, while assuring 

that each thread always sees a consistent state of the data structure. We attempt this by having a 

different lock on each of the AirportLists. 
 

a) Our first attempt at the removeRoute method is below. Assume hasFlightTo and 

removeFlight are methods on an AirportList. removeFlight will throw an exception if 

the specified flight is not present. 
 

void removeRoute1(int x, int y, AirportList[] airports) { 

    synchronized(airports[x]) { 

        synchronized(airports[y]) { 

            if(airports[x].hasFlightTo(y)) { 

                airports[x].removeFlight(y); 

                airports[y].removeFlight(x); 
            } 

        } 

    } 

} 

i. Does the code above have (circle all that apply):   

 

potential for deadlock,  a data race,  a race condition,  none of these 

 

ii. If possible, show (as done in class) an interleaving of two or more threads calling 

removeRoute1 that demonstrates a concurrency error.  If not possible, explain why not. 

 

 

 

 

 

 

 

 

 

 

 

 



  9 of 12 

6) (Continued)  

b) Our second attempt at the removeRoute method is below.  
 

void removeRoute2(int x, int y, AirportList[] airports) { 

    synchronized(airports[x]) { 

        if(!(airports[x].hasFlightTo(y))) { 

            return; 

        } 

    } 

    synchronized(airports[x]) { 

      airports[x].removeFlight(y);  

    } 

    synchronized(airports[y]) { 

      airports[y].removeFlight(x); 

    } 

} 

i. Does the code above have (circle all that apply):   

 

potential for deadlock,  a data race,  a race condition,  none of these 

 

ii. If possible, show (as done in class) an interleaving of two or more threads calling 

removeRoute2 that demonstrates a concurrency error.  If not possible, explain why not. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c) Finally, the developers’ consider scrapping the one-lock-per AirportList strategy in favor 

of a single lock, locking the entire array of  AirportLists.  

 

One benefit of a single-lock locking all airports: 

 

 

 

One drawback of a single-lock locking all airports: 

 

 



10 of 12 

 

7) [10 points] Sorting 

 

You are given a list of AVL trees. The keys in the AVL trees are ages of people. Each AVL tree 

represents the ages for people in a different community. Your task is to sort the AVL trees such 

that tree X comes before tree Y if and only if: 

 The minimal age in tree X is less than the minimal age in tree Y, or 

 The minimal ages are the same, but the maximal age in tree X is less than the maximal age in 

tree Y 

 

Otherwise, ties are broken arbitrarily. You may assume that: 

 There are k trees 

 Each tree has n keys in it 

 The range of ages is fixed (0-127) 

 

 

a) [5 points] Describe in a few sentences or numbered steps how you could use Mergesort to 

sort these trees efficiently in the worst case. What is the running time in terms of k and n? 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) [5 points] Describe in a few sentences or numbered steps how you could use ideas from 

Radixsort to sort these trees efficiently in the worst case. What is the running time in terms of 

k and n? 

 

 

 

 

 

 

 

 

 

 

 

 

Running Time: 

Running Time: 



  11 of 12 

8) [11 points] More Sorting 

a) [3 points] Give the recurrence for Mergesort (parallel sort & sequential merge) – best 

case span: (Note: We are NOT asking for the closed form.) 

 

 

 

 

b) [3 points] In the ____ spaces below, order these sorts from slowest to fastest in terms of 

big-O runtimes. For parallel sorts, use the span.  Draw a circle around any sorts whose 

big-O runtimes are the same. You do not have to give the runtimes, just list the sort 

letters. 

 

A) Mergesort (sequential) – worst case 

 

B) Quicksort (parallel sort & parallel partition) – best case span 

 

C) Quicksort (sequential) – best case 

 

D) Quicksort (sequential) – worst case 

 

E) Quicksort (parallel sort & parallel partition) – worst case span 

 

 

_________ _________ _________ _________ _________ 

Slowest       Fastest 

 

c) [2 points] Suppose we choose the median of five items as the pivot in quicksort.  If we 

have an N element array, then we find the median of the elements located at the 

following positions: left (= 0), right (= N – 1), center (the average of left and right, 

rounded down), leftOfCenter (the average of left and center, rounded down), and 

rightOfCenter (the average of right and center, rounded down).  The median of these 

elements is the pivot. 

 

 What is the worst case running time of this version of quicksort? 

 

 

 

 

 

d) [1 point] Any algorithm for sorting must take (N log N) time in the worst-case. 

 

        TRUE  FALSE 

 

e) [2 points] What does it mean for a sort to be stable? 



12 of 12 

 

9) [11 points] P, NP, NP-Complete 
 

a) [2 points] “NP” stands for    ____________________________________________________ 
 

b) [2 points] What does it mean for a problem to be in NP-complete? 

 

 

 

 

 

 

c) [5 points] For the following problems, circle ALL the sets they belong to: 

 

Determining if a chess move 

is the best move on an N x N 

board    NP  P NP-complete  None of these  

 

Finding the maximum value 

in an array    NP  P NP-complete  None of these  

 

Finding a cycle that visits 

each vertex in a graph  

exactly once   NP  P NP-complete  None of these  

 

Finding a cycle that visits 

each edge in a graph  

exactly once   NP  P NP-complete  None of these  

 

Determining if a program 

will ever stop running  NP  P NP-complete  None of these  

 

 

d) [1 point] If there exists a polynomial time algorithm to solve Euler Circuit, then there exists a 

polynomial time algorithm to solve SAT.      

TRUE  FALSE 

 

 

e) [1 point] If there exists a polynomial time algorithm to solve Hamiltonian Circuit then any 

problem in NP can be solved by some polynomial time algorithm.   

 

         TRUE  FALSE 

 


