CSE 332: Data Abstractions
Lecture 11: More Hashing

Ruth Anderson
Winter 2015
Announcements

• Homework 3—due tonight
• Project 2—Phase A due Monday Feb 2
Today

• Dictionaries
 – Hashing
Hash Tables: Review

- Aim for constant-time (i.e., $O(1)$) **find**, **insert**, and **delete**
 - “On average” under some reasonable assumptions

- A hash table is an array of some fixed size
 - But growable as we’ll see

![Diagram showing hash table operations and collision resolution](image-url)
Hashing Choices

1. Choose a Hash function
2. Choose TableSize
3. Choose a Collision Resolution Strategy from these:
 - Separate Chaining
 - Open Addressing
 - Linear Probing
 - Quadratic Probing
 - Double Hashing

• Other issues to consider:
 - Deletion?
 - What to do when the hash table gets “too full”?
Open Addressing: Linear Probing

- Why not use up the empty space in the table?
- Store directly in the array cell (no linked list)
- How to deal with collisions?
- If $h(\text{key})$ is already full,
 - try $(h(\text{key}) + 1) \mod \text{TableSize}$. If full,
 - try $(h(\text{key}) + 2) \mod \text{TableSize}$. If full,
 - try $(h(\text{key}) + 3) \mod \text{TableSize}$. If full...

Example: insert 38, 19, 8, 109, 10
Open Addressing: Linear Probing

• Another simple idea: If $h(\text{key})$ is already full,
 - try $(h(\text{key}) + 1) \% \text{TableSize}$. If full,
 - try $(h(\text{key}) + 2) \% \text{TableSize}$. If full,
 - try $(h(\text{key}) + 3) \% \text{TableSize}$. If full...

• Example: insert 38, 19, 8, 109, 10

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Open Addressing: Linear Probing

- Another simple idea: If $h(key)$ is already full,
 - try $(h(key) + 1) \mod \text{TableSize}$. If full,
 - try $(h(key) + 2) \mod \text{TableSize}$. If full,
 - try $(h(key) + 3) \mod \text{TableSize}$. If full...

- Example: insert 38, 19, 8, 109, 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>38</td>
<td>19</td>
</tr>
</tbody>
</table>
Open Addressing: Linear Probing

- Another simple idea: If \(h(\text{key}) \) is already full,
 - try \((h(\text{key}) + 1) \% \text{TableSize} \). If full,
 - try \((h(\text{key}) + 2) \% \text{TableSize} \). If full,
 - try \((h(\text{key}) + 3) \% \text{TableSize} \). If full...

- Example: insert 38, 19, 8, 109, 10
Open Addressing: Linear Probing

- Another simple idea: If $h(key)$ is already full,
 - try $(h(key) + 1) \% \text{TableSize}$. If full,
 - try $(h(key) + 2) \% \text{TableSize}$. If full,
 - try $(h(key) + 3) \% \text{TableSize}$. If full...

- Example: insert 38, 19, 8, 109, 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>109</td>
<td>10</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>38</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>
Open addressing

Linear probing is *one example* of open addressing

In general, open addressing means resolving collisions by trying a sequence of other positions in the table.

Trying the *next* spot is called probing

- We just did linear probing:
 - \(i^{th} \) probe: \((h(key) + i) \mod TableSize \)
- In general have some probe function \(f \) and:
 - \(i^{th} \) probe: \((h(key) + f(i)) \mod TableSize \)

Open addressing does poorly with high load factor \(\lambda \)

- So want larger tables
- Too many probes means no more \(O(1) \)
Terminology

We and the book use the terms
- “chaining” or “separate chaining”
- “open addressing”

Very confusingly,
- “open hashing” is a synonym for “chaining”
- “closed hashing” is a synonym for “open addressing”
Open Addressing: Linear Probing

What about **find**? If value is in table? If not there? Worst case?

What about **delete**?

How does open addressing with linear probing compare to separate chaining?
Open Addressing: Other Operations

insert finds an open table position using a probe function

What about **find**?
- Must use same probe function to “retrace the trail” for the data
- Unsuccessful search when reach empty position

What about **delete**?
- **Must** use “lazy” deletion. Why?
 - Marker indicates “no data here, but don’t stop probing”

 | 10 | ✗ | / | 23 | / | / | 16 | ✗ | 26 |

- Note: **delete** with chaining is plain-old list-remove
Primary Clustering

It turns out linear probing is a bad idea, even though the probe function is quick to compute (a good thing)

• Tends to produce clusters, which lead to long probe sequences
• Called primary clustering
• Saw the start of a cluster in our linear probing example
Analysis of Linear Probing

• **Trivial fact:** For any $\lambda < 1$, linear probing will find an empty slot
 – It is “safe” in this sense: no infinite loop unless table is full

• **Non-trivial facts** we won’t prove:
 Average # of probes given λ (in the limit as $\text{TableSize} \to \infty$)
 – Unsuccessful search:
 \[
 \frac{1}{2} \left(1 + \frac{1}{(1 - \lambda)^2} \right)
 \]
 – Successful search:
 \[
 \frac{1}{2} \left(1 + \frac{1}{1 - \lambda} \right)
 \]

• This is pretty bad: need to leave sufficient empty space in the table to get decent performance (see chart)
Analysis in chart form

- Linear-probing performance degrades rapidly as table gets full
 - (Formula assumes “large table” but point remains)

- By comparison, separate chaining performance is linear in λ and has no trouble with $\lambda > 1$
Open Addressing: Linear probing

\[(h(key) + f(i)) \mod \text{TableSize}\]

– For linear probing:
 \[f(i) = i\]

– So probe sequence is:
 • 0\(^{th}\) probe: \(h(key) \mod \text{TableSize}\)
 • 1\(^{st}\) probe: \((h(key) + 1) \mod \text{TableSize}\)
 • 2\(^{nd}\) probe: \((h(key) + 2) \mod \text{TableSize}\)
 • 3\(^{rd}\) probe: \((h(key) + 3) \mod \text{TableSize}\)
 • ...
 • \(i\)^{th} probe: \((h(key) + i) \mod \text{TableSize}\)
Open Addressing: Quadratic probing

- We can avoid primary clustering by changing the probe function…

 \[(h(key) + f(i)) \% TableSize \]

 - For quadratic probing:
 \[f(i) = i^2 \]

 - So probe sequence is:

 - 0th probe: \(h(key) \% TableSize \)
 - 1st probe: \((h(key) + 1) \% TableSize \)
 - 2nd probe: \((h(key) + 4) \% TableSize \)
 - 3rd probe: \((h(key) + 9) \% TableSize \)
 - ...
 - \(ith \) probe: \((h(key) + i^2) \% TableSize \)

- Intuition: Probes quickly “leave the neighborhood”
Quadratic Probing Example

ith probe: \(h(key) + i^2 \) \% TableSize

TableSize=10
Insert:
89
18
49
58
79
Quadratic Probing Example

TableSize = 10

insert(89)
Quadratic Probing Example

Table Size = 10

- insert(89)
- insert(18)
Quadratic Probing Example

Table Size = 10

- insert(89)
- insert(18)
- insert(49)
Quadratic Probing Example

TableSize = 10

- Insert(89)
- Insert(18)
- Insert(49)

Collision!

- $49 \mod 10 = 9$
- $(49 + 1) \mod 10 = 0$

- Insert(58)
Quadratic Probing Example

TableSize = 10

insert(89)
insert(18)
insert(49)
insert(58)

58 \% 10 = 8 \text{ collision!}
(58 + 1) \% 10 = 9 \text{ collision!}
(58 + 4) \% 10 = 2

insert(79)
Quadratic Probing Example

TableSize = 10

insert(89)
insert(18)
insert(49)
insert(58)
insert(79)

79 % 10 = 9 collision!
(79 + 1) % 10 = 0 collision!
(79 + 4) % 10 = 3
Another Quadratic Probing Example

TableSize = 7

<table>
<thead>
<tr>
<th>Insert</th>
<th>(TableSize)</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>(76 % 7 = 6)</td>
</tr>
<tr>
<td>40</td>
<td>(40 % 7 = 5)</td>
</tr>
<tr>
<td>48</td>
<td>(48 % 7 = 6)</td>
</tr>
<tr>
<td>5</td>
<td>(5 % 7 = 5)</td>
</tr>
<tr>
<td>55</td>
<td>(55 % 7 = 6)</td>
</tr>
<tr>
<td>47</td>
<td>(47 % 7 = 5)</td>
</tr>
</tbody>
</table>

ith probe: \((h(key) + i^2) \mod TableSize \)
Another Quadratic Probing Example

TableSize = 7

Insert:

76 \hspace{2cm} (76 \mod 7 = 6)
40 \hspace{2cm} (40 \mod 7 = 5)
48 \hspace{2cm} (48 \mod 7 = 6)
5 \hspace{2cm} (5 \mod 7 = 5)
55 \hspace{2cm} (55 \mod 7 = 6)
47 \hspace{2cm} (47 \mod 7 = 5)
Another Quadratic Probing Example

Table Size = 7

Insert:

<table>
<thead>
<tr>
<th>i</th>
<th>Probe Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>76</td>
</tr>
</tbody>
</table>

ith probe: $(h(key) + i^2) \mod TableSize$

- Insert 76: $(76 \mod 7 = 6)$
- Insert 40: $(40 \mod 7 = 5)$
- Insert 48: $(48 \mod 7 = 6)$
- Insert 5: $(5 \mod 7 = 5)$
- Insert 55: $(55 \mod 7 = 6)$
- Insert 47: $(47 \mod 7 = 5)$
Another Quadratic Probing Example

TableSize = 7

Insert:

<table>
<thead>
<tr>
<th>Probe</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>48</td>
</tr>
<tr>
<td>1</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>47</td>
</tr>
</tbody>
</table>
Another Quadratic Probing Example

TableSize = 7

Insert:

<table>
<thead>
<tr>
<th>ith probe: ((h(\text{key}) + i^2) \mod \text{TableSize})</th>
<th>76</th>
<th>(76 (\mod) 7 = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>(40 (\mod) 7 = 5)</td>
</tr>
<tr>
<td>2</td>
<td>48</td>
<td>(48 (\mod) 7 = 6)</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>(5 (\mod) 7 = 5)</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>55</td>
<td>(55 (\mod) 7 = 6)</td>
</tr>
<tr>
<td>6</td>
<td>47</td>
<td>(47 (\mod) 7 = 5)</td>
</tr>
</tbody>
</table>
Another Quadratic Probing Example

TableSize = 7

Insert:

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ith probe: \(h(key) + i^2 \) \% TableSize

76 \((76 \% 7 = 6) \)

40 \((40 \% 7 = 5) \)

48 \((48 \% 7 = 6) \)

5 \((5 \% 7 = 5) \)

55 \((55 \% 7 = 6) \)

47 \((47 \% 7 = 5) \)
Another Quadratic Probing Example

TableSize = 7

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>48</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>76</td>
</tr>
</tbody>
</table>

Insert:

- 76 \((76 \% 7 = 6)\)
- 40 \((40 \% 7 = 5)\)
- 48 \((48 \% 7 = 6)\)
- 5 \((5 \% 7 = 5)\)
- 55 \((55 \% 7 = 6)\)
- 47 \((47 \% 7 = 5)\)

\((47 + 1) \% 7 = 6\) collision!

\((47 + 4) \% 7 = 2\) collision!

\((47 + 9) \% 7 = 0\) collision!

\((47 + 16) \% 7 = 0\) collision!

\((47 + 25) \% 7 = 2\) collision!

Will we ever get a 1 or 4?!?
Another Quadratic Probing Example

insert(47) will always fail here. Why?

For all i, $(5 + i^2) \mod 7$ is 0, 2, 5, or 6

Proof uses induction and

$$(5 + i^2) \mod 7 = (5 + (i - 7)^2) \mod 7$$

In fact, for all c and k,

$$(c + i^2) \mod k = (c + (i - k)^2) \mod k$$
From bad news to good news

Bad News:
- After `TableSize` quadratic probes, we cycle through the same indices

Good News:
- If `TableSize` is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in at most $\frac{TableSize}{2}$ probes
- So: If you keep $\lambda < \frac{1}{2}$ and `TableSize` is prime, no need to detect cycles
- Proof posted in `lecture11.txt` (slightly less detailed proof in textbook)
 - For prime T and $0 \leq i,j \leq T/2$ where $i \neq j$,
 $$ (h(key) + i^2) \% T \neq (h(key) + j^2) \% T $$
 That is, if T is prime, the first $T/2$ quadratic probes map to different locations
Quadratic Probing: Success guarantee for $\lambda < \frac{1}{2}$

- If size is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in size/2 probes or fewer.
 - show for all $0 \leq i, j \leq \text{size}/2$ and $i \neq j$

 \[(h(x) + i^2) \mod \text{size} \neq (h(x) + j^2) \mod \text{size}\]
 - by contradiction: suppose that for some $i \neq j$:

 \[(h(x) + i^2) \mod \text{size} = (h(x) + j^2) \mod \text{size}\]

 \[\Rightarrow i^2 \mod \text{size} = j^2 \mod \text{size}\]

 \[\Rightarrow (i^2 - j^2) \mod \text{size} = 0\]

 \[\Rightarrow [(i + j)(i - j)] \mod \text{size} = 0\]

 BUT size does not divide $(i-j)$ or $(i+j)$

How can $i+j = 0$ or $i+j = \text{size}$ when:

- $i \neq j$ and $0 \leq i, j \leq \text{size}/2$?

Similarly how can $i-j = 0$ or $i-j = \text{size}$?

First size/2 probes distinct. If < half full, one is empty.

First size/2 probes will be distinct, and if less than half of table is full then after size/2 probes you will find one of those empty spots

One of these must be $= 0$ when mod size
Clustering reconsidered

- Quadratic probing does not suffer from primary clustering: No problem if keys initially hash to the same neighborhood

- But it’s no help if keys initially hash to the same index
 - Any 2 keys that hash to the same value will have the same series of moves after that
 - Called secondary clustering

- Can avoid secondary clustering with a probe function that depends on the key: double hashing…
Open Addressing: Double hashing

Idea: Given two good hash functions h and g, it is very unlikely that for some key key, $h(key) == g(key)$

$$(h(key) + f(i)) \mod TableSize$$

- For double hashing:
 $$f(i) = i \times g(key)$$

- So probe sequence is:
 - 0^{th} probe: $h(key) \mod TableSize$
 - 1^{st} probe: $(h(key) + g(key)) \mod TableSize$
 - 2^{nd} probe: $(h(key) + 2 \times g(key)) \mod TableSize$
 - 3^{rd} probe: $(h(key) + 3 \times g(key)) \mod TableSize$
 - ...
 - i^{th} probe: $(h(key) + i \times g(key)) \mod TableSize$

- Detail: Make sure $g(key)$ can’t be 0
Open Addressing: Double Hashing

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

T = 10 (TableSize)

Hash Functions:
\[
\begin{align*}
 h(key) &= key \mod T \\
 g(key) &= 1 + \left(\left\lfloor\frac{key}{T}\right\rfloor \mod (T-1)\right)
\end{align*}
\]

Insert these values into the hash table in this order. Resolve any collisions with double hashing:
13
28
33
147
43
Double Hashing

T = 10 (TableSize)

Hash Functions:
- $h(key) = key \mod T$
- $g(key) = 1 + ((key/T) \mod (T-1))$

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

13
28
33
147
43
Double Hashing

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

- 13
- 28
- 33
- 147
- 43

Hash Functions:

\[
\begin{align*}
\text{h(key)} &= \text{key mod T} \\
\text{g(key)} &= 1 + ((\text{key}/T) \mod (T-1))
\end{align*}
\]

\[
\text{ith probe: } (h(key) + i \times g(key)) \mod \text{TableSize}
\]
Double Hashing

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T = 10 (TableSize)

Hash Functions:

\[h(key) = \text{key mod } T \]

\[g(key) = 1 + ((\text{key}/T) \mod (T-1)) \]

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

- 13
- 28
- 33 → \[g(33) = 1 + 3 \mod 9 = 4 \]
- 147
- 43

\[\text{ith probe: } (h(key) + i\times g(key)) \mod \text{TableSize} \]
Double Hashing

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

13
28
33
147

\[g(147) = 1 + 14 \mod 9 = 6 \]

43

ith probe: \((h(key) + i \times g(key)) \mod TableSize \)

Hash Functions:

\[h(key) = key \mod T \]

\[g(key) = 1 + ((key/T) \mod (T-1)) \]

Table:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td></td>
<td>28</td>
<td>147</td>
</tr>
</tbody>
</table>

T = 10 *(TableSize)*
Double Hashing

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

- 13
- 28
- 33
- 147

\[g(147) = 1 + 14 \mod 9 = 6 \]

\[g(43) = 1 + 4 \mod 9 = 5 \]

We have a problem:

- \[3 + 0 = 3 \]
- \[3 + 5 = 8 \]
- \[3 + 10 = 13 \]
- \[3 + 15 = 18 \]
- \[3 + 20 = 23 \]
Double-hashing analysis

- **Intuition**: Since each probe is “jumping” by $g(key)$ each time, we “leave the neighborhood” and “go different places from other initial collisions”

But, as in quadratic probing, we could still have a problem where we are not "safe" due to an infinite loop despite room in table

- It is known that this cannot happen in at least one case:

 For primes p and q such that $2 < q < p$

 $h(key) = key \% p$

 $g(key) = q - (key \% q)$
More double-hashing facts

- Assume “uniform hashing”
 - Means probability of \(g(key1) \mod p == g(key2) \mod p \) is \(1/p \)

- Non-trivial facts we won’t prove:
 Average # of probes given \(\lambda \) (in the limit as TableSize \(\to \infty \))
 - Unsuccessful search (intuitive): \(\frac{1}{1 - \lambda} \)
 - Successful search (less intuitive): \(\frac{1}{\lambda \log_e \left(\frac{1}{1 - \lambda} \right)} \)

- Bottom line: unsuccessful bad (but not as bad as linear probing), but successful is not nearly as bad
Charts

Uniform Hashing

Linear Probing

Load Factor

Average # of Probes

Load Factor

Average # of Probes

Load Factor

Average # of Probes

Load Factor

Uniform Hashing

Linear Probing

uniform hashing not found
uniform hashing found

linear probing not found
linear probing found
Where are we?

- **Separate Chaining** is easy
 - *find*, *delete* proportional to load factor on average
 - *insert* can be constant if just push on front of list
- **Open addressing** uses probing, has clustering issues as table fills

Why use it:
- Less memory allocation?
 - Some run-time overhead for allocating linked list (or whatever) nodes; open addressing could be faster
 - Easier data representation?

Now:
- Growing the table when it gets too full (aka “rehashing”)
- Relation between hashing/comparing and connection to Java
Rehashing

• As with array-based stacks/queues/lists, if table gets too full, create a bigger table and copy everything over

• With separate chaining, we get to decide what “too full” means
 – Keep load factor reasonable (e.g., < 1)?
 – Consider average or max size of non-empty chains?
• For open addressing, half-full is a good rule of thumb

• New table size
 – Twice-as-big is a good idea, except, uhm, that won’t be prime!
 – So go about twice-as-big
 – Can have a list of prime numbers in your code since you probably won’t grow more than 20-30 times, and then calculate after that
More on rehashing

- What if we copy all data to the same indices in the new table?
 - Will not work; we calculated the index based on TableSize

- Go through table, do standard insert for each into new table
 - Iterate over old table: $O(n)$
 - n inserts / calls to the hash function: $n \cdot O(1) = O(n)$

- Is there some way to avoid all those hash function calls?
 - Space/time tradeoff: Could store $h(key)$ with each data item
 - Growing the table is still $O(n)$; only helps by a constant factor
Hashing and comparing

• Our use of int key can lead to us overlooking a critical detail:
 – We initially hash E to get a table index
 – While chaining or probing we compare to E
 • Just need equality testing (i.e., “is it what I want”)

• So a hash table needs a hash function and a comparator
 – In Project 2, you will use two function objects
 – The Java library uses a more object-oriented approach: each object has an equals method and a hashCode method

```java
class Object {
    boolean equals(Object o) {...
    int hashCode() {...
    ...
}
```
Equal objects must hash the same

- The Java library (and your project hash table) make a very important assumption that clients must satisfy…

- Object-oriented way of saying it:

  ```
  if (a.equals(b), then we must require
  a.hashCode() == b.hashCode()
  ```

- Function object way of saying it:

  ```
  if (c.compare(a,b) == 0, then we must require
  h.hash(a) == h.hash(b)
  ```

- If you ever override equals
 - You need to override hashCode also in a consistent way
 - See CoreJava book, Chapter 5 for other "gotchas" with equals
By the way: comparison has rules too

We have not emphasized important “rules” about comparison for:
 – All our dictionaries
 – Sorting (next major topic)

Comparison must impose a consistent, total ordering:

For all \(a, b, \) and \(c, \)
 – If \(\text{compare}(a, b) < 0 \), then \(\text{compare}(b, a) > 0 \)
 – If \(\text{compare}(a, b) == 0 \), then \(\text{compare}(b, a) == 0 \)
 – If \(\text{compare}(a, b) < 0 \) and \(\text{compare}(b, c) < 0 \),
 then \(\text{compare}(a, c) < 0 \)
A Generally Good hashCode()

```java
int result = 17; // start at a prime
foreach field f
    int fieldHashcode =
        boolean: (f ? 1: 0)
        byte, char, short, int: (int) f
        long: (int) (f ^ (f >>> 32))
        float: Float.floatToIntBits(f)
        double: Double.doubleToLongBits(f), then above
        Object: object.hashCode()

    result = 31 * result + fieldHashcode;
return result;
```
Final word on hashing

- The hash table is one of the most important data structures
 - Efficient find, insert, and delete
 - Operations based on sorted order are not so efficient
 - Useful in many, many real-world applications
 - Popular topic for job interview questions
- Important to use a good hash function
 - Good distribution, Uses enough of key’s values
 - Not overly expensive to calculate (bit shifts good!)
- Important to keep hash table at a good size
 - Prime #
 - Preferable λ depends on type of table
- What we skipped: Perfect hashing, universal hash functions, hopscotch hashing, cuckoo hashing
- Side-comment: hash functions have uses beyond hash tables
 - Examples: Cryptography, check-sums