CSE 332: Data Abstractions

Lecture 9: B Trees

Ruth Anderson

Winter 2015
Announcements

- **Homework 2** – due tonight!
- **Project 2** – Partner selection due tonight.
- **Homework 3** – due next **Wednesday**
Today

• Dictionaries
 – B-Trees
Our goal

• **Problem**: A dictionary with so much data most of it is on disk

• **Desire**: A balanced tree (logarithmic height) that is even shallower than AVL trees so that we can minimize disk accesses and exploit disk-block size

• **A key idea**: Increase the branching factor of our tree
M-ary Search Tree

- Build some sort of search tree with branching factor M:
 - Have an array of sorted children (`Node[]`)
 - Choose M to fit snugly into a disk block (1 access for array)

Perfect tree of height h has $\frac{M^{h+1}-1}{M-1}$ nodes (textbook, page 4)

What is the **height** of this tree?
What is the worst case running time of **find**?
M-ary Search Tree

- # hops for find?
 - If we have a balanced M-ary tree:
 - Approx. $\log_M n$ hops instead of $\log_2 n$ (for balanced BST)
 - Example: $M = 256 (=2^8)$ and $n = 2^{40}$ that’s 5 hops instead of 40 hops
- Sounds good, but how do we decide which branch to take?
 - Binary tree: Less than/greater than node value?
 - M-ary: In range 1? In range 2? In range 3?... In range M?
- Runtime of find if balanced: $O(\log_2 M \log_M n)$
 - $\log_M n$ is the height we traverse.
 - $\log_2 M$: At each step, find the correct child branch to take using binary search among the M options!
Questions about M-ary search trees

- What should the order property be?
- How would you rebalance (ideally without more disk accesses)?
- Storing real data at inner-nodes (like we do in a BST) seems kind of wasteful…
 - To access the node, will have to load the data from disk, even though most of the time we won’t use it!!
 - Usually we are just “passing through” a node on the way to the value we are actually looking for.

So let’s use the branching-factor idea, but for a different kind of balanced tree:
 - Not a binary search tree
 - But still logarithmic height for any $M > 2$
B+ Trees (we and the book say “B Trees”)

- Two types of nodes: **internal nodes** & **leaves**
- Each **internal node** has room for up to \(M-1 \) keys and \(M \) children
 - No other data; **all data at the leaves**!
- **Order property:**
 - Subtree **between** keys \(a \) and \(b \) contains only data that is \(\geq a \) and \(< b \) (notice the \(\geq \))
- **Leaf** nodes have up to \(L \) sorted data items
- As usual, we’ll ignore the “along for the ride” data in our examples
 - Remember no data at non-leaves

![Diagram of B+ Tree]

Remember:
- **Leaves** store data
- **Internal nodes** are ‘signposts’
Find

- Different from BST in that we *don’t store data at internal nodes*

- But **find** is still an easy root-to-leaf recursive algorithm
 - At each internal node do binary search on (up to) M-1 keys to find the branch to take
 - At the leaf do binary search on the (up to) L data items

- But to get logarithmic running time, we need a balance condition…
Structure Properties

• **Root** (special case)
 - If tree has \(\leq L \) items, root is a leaf (occurs when starting up, otherwise unusual)
 - Else has between 2 and \(M \) children

• **Internal nodes**
 - Have between \(\lceil M/2 \rceil \) and \(M \) children, i.e., at least half full

• **Leaf nodes**
 - All leaves at the same depth
 - Have between \(\lceil L/2 \rceil \) and \(L \) data items, i.e., at least half full

Any \(M > 2 \) and \(L \) will work, but:

We pick \(M \) and \(L \) **based on disk-block size**
Example

Suppose $M=4$ (max # pointers in internal node) and $L=5$ (max # data items at leaf)
- All internal nodes have at least 2 children
- All leaves have at least 3 data items (only showing keys)
- All leaves at same depth

Note on notation: Inner nodes drawn horizontally, leaves vertically to distinguish. Include empty cells
Balanced enough

Not hard to show height h is logarithmic in number of data items n

- Let $M > 2$ (if $M = 2$, then a list tree is legal – no good!)

- Because all nodes are at least half full (except root may have only 2 children) and all leaves are at the same level, the minimum number of data items n for a height $h > 0$ tree is...

$$n \geq 2 \left\lceil \frac{M}{2} \right\rceil ^{h-1} \left\lceil \frac{L}{2} \right\rceil$$

minimum number of leaves minimum data per leaf
Example: B-Tree vs. AVL Tree

Suppose we have 100,000,000 items

- Maximum height of AVL tree?

- Maximum height of B tree with $M=128$ and $L=64$?
Example: B-Tree vs. AVL Tree

Suppose we have 100,000,000 items

• **Maximum height of AVL tree?**
 – Recall $S(h) = 1 + S(h-1) + S(h-2)$
 – lecture7.xlsx reports: 37

• **Maximum height of B tree** with $M=128$ and $L=64$?
 – Recall $(2 \left\lceil \frac{M}{2} \right\rceil^{h-1}) \left\lceil \frac{L}{2} \right\rceil$
 – lecture9.xlsx reports: 5 (and 4 is more likely)
 – Also not difficult to compute via algebra
Disk Friendliness

What makes B trees so disk friendly?

• Many keys stored in one internal node
 – All brought into memory in one disk access
 • IF we pick M wisely
 – Makes the binary search over M-1 keys totally worth it
 (insignificant compared to disk access times)

• Internal nodes contain only keys
 – Any find wants only one data item; wasteful to load unnecessary items with internal nodes
 – So only bring one leaf of data items into memory
 – Data-item size doesn’t affect what M is
Maintaining balance

• So this seems like a great data structure (and it is)

• But we haven’t implemented the other dictionary operations yet
 – insert
 – delete

• As with AVL trees, the hard part is maintaining structure properties
 – Example: for insert, there might not be room at the correct leaf
Building a B-Tree (insertions)

The empty B-Tree (the root will be a leaf at the beginning)

\[M = 3 \quad L = 3 \]
$M = 3$ $L = 3$

- When we ‘overflow’ a leaf, we split it into 2 leaves
- Parent gains another child
- If there is no parent (like here), we create one; how do we pick the key shown in it?
 - Smallest element in right tree
$M = 3 \quad L = 3$
Split the internal node (in this case, the root)

$M = 3 \quad L = 3$

1/23/2015

What now?
Note: Given the leaves and the structure of the tree, we can always fill in internal node keys; ‘the smallest value in my right branch’
Insertion Algorithm

1. Insert the data in its **leaf** in sorted order

2. If the **leaf** now has \(L + 1 \) items, *overflow!*
 - Split the **leaf** into two nodes:
 - Original **leaf** with \(\lceil (L+1)/2 \rceil \) smaller items
 - New **leaf** with \(\lfloor (L+1)/2 \rfloor = \lceil L/2 \rceil \) larger items
 - Attach the new child to the parent
 - Adding new key to parent in sorted order

3. If step (2) caused the parent to have \(M + 1 \) children, *overflow!*
 - ...
Insertion algorithm continued

3. If an **internal node** has \(M+1 \) children
 - Split the **node** into **two nodes**
 - Original **node** with \(\lceil (M+1)/2 \rceil \) smaller items
 - New **node** with \(\lfloor (M+1)/2 \rfloor = \lceil M/2 \rceil \) larger items
 - Attach the new child to the parent
 - Adding new key to parent in sorted order

Splitting at a node (step 3) could make the parent overflow too
 - So *repeat step 3 up the tree until a node doesn’t overflow*
 - If the **root** overflows, make a new **root** with two children
 - This is the only case that increases the tree height

Efficiency of insert

- Find correct leaf: $O(\log_2 M \log_M n)$
- Insert in leaf: $O(L)$
- Split leaf: $O(L)$
- Split parents all the way up to root: $O(M \log_M n)$

Total: $O(L + M \log_M n)$

But it’s not that bad:

- Splits are not that common (only required when a node is FULL, M and L are likely to be large, and after a split, will be half empty)
- Splitting the root is extremely rare
- Remember disk accesses were the name of the game: $O(\log_M n)$

1/23/2015
B-Tree Reminder: Another dictionary

- Before we talk about deletion, just keep in mind overall idea:
 - Large data sets won’t fit entirely in memory
 - Disk access is slow
 - Set up tree so we do one disk access per node in tree
 - Then our goal is to keep tree shallow as possible
 - Balanced binary tree is a good start, but we can do better than $\log_2 n$ height
 - In an M-ary tree, height drops to $\log_M n$
 - Why not set M really really high? Height 1 tree…
 - Instead, set M so that each node fits in a disk block
And Now for Deletion…

Delete(32)

$M = 3 \quad L = 3$

Easy case: Leaf still has enough data; just remove
Delete(15)

\[M = 3 \quad L = 3 \]

Is there a problem?
M = 3 L = 3

Adopt from neighbor!
Delete(16)

\[M = 3 \quad L = 3 \]

Is there a problem?
\[M = 3 \quad L = 3 \]

Merge with neighbor!

But hey, Is there a problem?
Adopt from neighbor!

$M = 3 \quad L = 3$
Delete(14)

$M = 3 \quad L = 3$
Delete(18)

Is there a problem?

\[M = 3 \quad L = 3 \]
Merge with neighbor!

But hey, Is there a problem?
Merge with neighbor!

But hey, Is there a problem?

$M = 3 \quad L = 3$

1/23/2015
\[M = 3 \quad L = 3 \]

Pull out the root!
Deletion Algorithm, part 1

1. Remove the data from its leaf

2. If the leaf now has \(\lceil L/2 \rceil - 1 \), underflow!
 - If a neighbor has > \(\lceil L/2 \rceil \) items, adopt and update parent
 - Else merge node with neighbor
 • Guaranteed to have a legal number of items
 • Parent now has one less node

3. If step (2) caused the parent to have \(\lceil M/2 \rceil - 1 \) children, underflow!
 - ...

1/23/2015
Deletion algorithm (continued)

3. If an internal node has \(\lceil \frac{M}{2} \rceil - 1\) children
 - If a neighbor has > \(\lceil \frac{M}{2} \rceil\) items, adopt and update parent
 - Else merge node with neighbor
 • Guaranteed to have a legal number of items
 • Parent now has one less node, may need to continue up the tree

If we merge all the way up through the root, that’s fine unless the root went from 2 children to 1
 - In that case, delete the root and make child the root
 - This is the only case that decreases tree height
Worst-Case Efficiency of Delete

- Find correct leaf: $O(\log_2 M \log_M n)$
- Remove from leaf: $O(L)$
- Adopt from or merge with neighbor: $O(L)$
- Adopt or merge all the way up to root: $O(M \log_M n)$

Total: $O(L + M \log_M n)$

But it’s not that bad:
- Merges are not that common
- Disk accesses are the name of the game: $O(\log_M n)$
Insert vs delete comparison

Insert
- Find correct leaf: \(O(\log_2 M \log_M n)\)
- Insert in leaf: \(O(L)\)
- Split leaf: \(O(L)\)
- Split parents all the way up to root: \(O(M \log_M n)\)

Delete
- Find correct leaf: \(O(\log_2 M \log_M n)\)
- Remove from leaf: \(O(L)\)
- Adopt/merge from/with neighbor leaf: \(O(L)\)
- Adopt or merge all the way up to root: \(O(M \log_M n)\)
B Trees in Java?

For most of our data structures, we have encouraged writing high-level, reusable code, such as in Java with generics.

It is worthwhile to know enough about “how Java works” to understand why this is probably a bad idea for B trees.

- If you just want a balanced tree with worst-case logarithmic operations, no problem
 - If $M=3$, this is called a 2-3 tree
 - If $M=4$, this is called a 2-3-4 tree
- Assuming our goal is efficient number of disk accesses
 - Java has many advantages, but it wasn’t designed for this

The key issue is extra *levels of indirection*...
Naïve approach in Java

Even if we assume data items have int keys, you cannot get the data representation you want for “really big data”

```java
interface Keyed {
    int getKey();
}
class BTreeNode<E extends Keyed> {
    static final int M = 128;
    int[] keys = new int[M-1];
    BTreeNode<E>[] children = new BTreeNode[M];
    int numChildren = 0;
    ...
}
class BTreeLeaf<E extends Keyed> {
    static final int L = 32;
    E[] data = (E[]) new Object[L];
    int numItems = 0;
    ...
}
```
What that looks like in Java

BTreeNode (Interior node)

<table>
<thead>
<tr>
<th>keys</th>
<th>children</th>
<th>numChildren</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>70</td>
</tr>
</tbody>
</table>

(array of M-1 ints)

(array of M refs to BTreeNodes)

BTreeLeaf (Leaf node)

<table>
<thead>
<tr>
<th>data</th>
<th>numItems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

(array of L refs to data objects)

Note: data objects not in contiguous memory.

All the red references indicate “unnecessary” indirection that might be avoided in another programming language.
The moral

• The whole idea behind B trees was to keep related data in contiguous memory

• But that’s “the best you can do” in Java
 – Again, the advantage is generic, reusable code
 – But for your performance-critical web-index, not the way to implement your B-Tree for terabytes of data

• Other languages (e.g., C++) have better support for “flattening objects into arrays”

• Levels of indirection matter!
Conclusion: Balanced Trees

- *Balanced* trees make good dictionaries because they guarantee logarithmic-time *find*, *insert*, and *delete*
 - Essential and beautiful computer science
 - But only if you can maintain balance within the time bound

- **AVL trees** maintain balance by tracking height and allowing all children to differ in height by at most 1

- **B trees** maintain balance by keeping nodes at least half full and all leaves at same height

- Other great balanced trees (see text; worth knowing they exist)
 - **Red-black trees**: all leaves have depth within a factor of 2
 - **Splay trees**: self-adjusting; amortized guarantee; no extra space for height information