CSE332: Data Abstractions
Lecture 2: Algorithm Analysis

Ruth Anderson
Winter 2015
Announcements

• Project 1 – phase A due Monday

• Homework 1 – (out soon) due next Friday (normally due on Wed)

• Office Hours – posted

• Calendar & Midterm date - coming soon
Today – Algorithm Analysis

• What do we care about?
• How to compare two algorithms
• Analyzing Code
• Recurrence relations
• Asymptotic Analysis
Algorithm Analysis

• Correctness:
 – Does the algorithm do what is intended.

• Performance:
 – Speed time complexity
 – Memory space complexity

• Why analyze?
 – To make good design decisions
 – Enable you to look at an algorithm (or code) and identify the bottlenecks, etc.
Correctness

Correctness of an algorithm is established by proof. Common approaches:

- (Dis)proof by counterexample
- Proof by contradiction
- Proof by induction
 - Especially useful in recursive algorithms
Proof by Induction

• **Base Case**: The algorithm is correct for a base case or two by inspection.

• **Inductive Hypothesis (n=k)**: Assume that the algorithm works correctly for the first k cases.

• **Inductive Step (n=k+1)**: Given the hypothesis above, show that the k+1 case will be calculated correctly.
Mathematical induction

Suppose $P(n)$ is some predicate (involving integer n)
 - Example: $n \geq \frac{n}{2} + 1$ (for all $n \geq 2$)

To prove $P(n)$ for all integers $n \geq c$, it suffices to prove
1. $P(c)$ – called the “basis” or “base case”
2. If $P(k)$ then $P(k+1)$ – called the “induction step” or “inductive case”

We will use induction:
 To show an algorithm is correct or has a certain running time
 no matter how big a data structure or input value is
 (Our “n” will be the data structure or input size.)
Inductive Proof Example

Theorem: $P(n)$ holds for all $n \geq 1$

Proof: By induction on n

• Base case, $n=1$: Sum of first power of 2 is 2^0, which equals 1. And for $n=1$, 2^n-1 equals 1.

• Inductive case:
 – Inductive hypothesis: Assume the sum of the first k powers of 2 is 2^k-1
 – Show, given the hypothesis, that the sum of the first $(k+1)$ powers of 2 is $2^{k+1}-1$

From our inductive hypothesis we know:

$$1 + 2 + 4 + \ldots + 2^{k-1} = 2^k - 1$$

Add the next power of 2 to both sides…

$$1 + 2 + 4 + \ldots + 2^{k-1} + 2^k = 2^k - 1 + 2^k$$

We have what we want on the left; massage the right a bit

$$1 + 2 + 4 + \ldots + 2^{k-1} + 2^k = 2(2^k) - 1 = 2^{k+1} - 1$$
Note for homework

Proofs by induction will come up a fair amount on the homework

When doing them, be sure to state each part clearly:

• What you’re trying to prove
• The base case
• The inductive case
• The inductive hypothesis
 – In many inductive proofs, you’ll prove the inductive case by just starting with your inductive hypothesis, and playing with it a bit, as shown above
How should we compare two algorithms?
Gauging performance

• Uh, why not just run the program and time it
 – Too much *variability*, not reliable or *portable*:
 • Hardware: processor(s), memory, etc.
 • OS, Java version, libraries, drivers
 • Other programs running
 • Implementation dependent
 – Choice of input
 • Testing (inexhaustive) may *miss* worst-case input
 • Timing does not *explain* relative timing among inputs (what happens when n doubles in size)

• Often want to evaluate an *algorithm*, not an implementation
 – Even *before* creating the implementation (“coding it up”)
Comparing algorithms

When is one *algorithm* (not *implementation*) better than another?

– Various possible answers (clarity, security, …)
– But a big one is *performance*: for sufficiently large inputs, runs in less time (our focus) or less space

Large inputs (n) because probably any algorithm is “plenty good” for small inputs (if n is 10, probably anything is fast enough)

Answer will be *independent* of CPU speed, programming language, coding tricks, etc.

Answer is general and rigorous, complementary to “coding it up and timing it on some test cases”

– Can do analysis before coding!
Today – Algorithm Analysis

• What do we care about?
• How to compare two algorithms
• Analyzing Code
• Recurrence relations
• Asymptotic Analysis
Analyzing code ("worst case")

Basic operations take “some amount of” constant time
 – Arithmetic (fixed-width)
 – Assignment
 – Access one Java field or array index
 – Etc.
(This is an approximation of reality: a very useful “lie”.)

Consecutive statements
 Sum of time of each statement
Conditionals
 Time of condition plus time of slower branch
Loops
 Num iterations * time for loop body
Function Calls
 Time of function’s body
Recursion
 Solve recurrence equation
Complexity cases

We’ll start by focusing on two cases:

- **Worst-case complexity**: max # steps algorithm takes on “most challenging” input of size N
- **Best-case complexity**: min # steps algorithm takes on “easiest” input of size N
Example

Find an integer in a sorted array

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
    ???
}
```
Linear search

Find an integer in a sorted array

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k){
    for(int i=0; i < arr.length; ++i)
        if(arr[i] == k)
            return true;
    return false;
}
```

Best case:
Worst case:
Linear search

Find an integer in a *sorted* array

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
    for (int i = 0; i < arr.length; ++i)
        if (arr[i] == k)
            return true;
    return false;
}
```

Best case: 6 “ish” steps = \(O(1)\)
Worst case: 5 “ish” \(\times (arr.length)\) = \(O(arr.length)\)
Analyzing Recursive Code

• Computing run-times gets interesting with recursion
• Say we want to perform some computation recursively on a list of size n
 – Conceptually, in each recursive call we:
 • Perform some amount of work, call it $w(n)$
 • Call the function recursively with a smaller portion of the list

• So, if we do $w(n)$ work per step, and reduce the problem size in the next recursive call by 1, we do total work:
 \[T(n) = w(n) + T(n-1) \]
• With some base case, like $T(1) = 5 = O(1)$
Example Recursive code: sum array

Recursive:
- Recurrence is some constant amount of work $O(1)$ done n times

```java
int sum(int[] arr){
    return help(arr,0);
}
int help(int[] arr, int i) {
    if(i==arr.length)
        return 0;
    return arr[i] + help(arr,i+1);
}
```

Each time `help` is called, it does that $O(1)$ amount of work, and then calls `help` again on a problem one less than previous problem size.

Recurrence Relation: $T(n) = O(1) + T(n-1)$
Solving Recurrence Relations

- Say we have the following recurrence relation:
 \[T(n) = 6 \text{ “ish”} + T(n-1) \]
 \[T(1) = 9 \text{ “ish”} \] \(\leftarrow\) base case

- Now we just need to solve it; that is, reduce it to a closed form.
- Start by writing it out:
 \[T(n) = 6 + T(n-1) \]
 \[= 6 + 6 + T(n-2) \]
 \[= 6 + 6 + 6 + T(n-3) \]
 \[= 6 + 6 + 6 + \ldots + 6 + T(1) = 6 + 6 + 6 + \ldots + 6 + 9 \]
 \[= 6k + T(n-k) \]
 \[= 6k + 9, \text{ where } k \text{ is the \# of times we expanded } T() \]

- We expanded it out \(n-1\) times, so
 \[T(n) = 6k + T(n-k) \]
 \[= 6(n-1) + T(1) = 6(n-1) + 9 \]
 \[= 6n + 3 = O(n) \]

Or When does \(n-k=1\)?
Answer: when \(k=n-1\)
Binary search

Find an integer in a *sorted* array

- Can also be done non-recursively but “doesn’t matter” here

```java
// requires array is sorted // returns whether k is in array boolean find(int[] arr, int k) {
    return help(arr, k, 0, arr.length);
}

boolean help(int[] arr, int k, int lo, int hi) {
    int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2
    if(lo==hi) return false;
    if(arr[mid]==k) return true;
    if(arr[mid]< k) return help(arr, k, mid+1, hi);
    else return help(arr, k, lo, mid);
}
```
Binary search

Best case: 9 “ish” steps = $O(1)$
Worst case: $T(n) = 10$ “ish” + $T(n/2)$ where n is hi-lo
 - $O(\log n)$ where n is array.length
 - Solve recurrence equation to know that…

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
    return help(arr, k, 0, arr.length);
}

boolean help(int[] arr, int k, int lo, int hi) {
    int mid = (hi+lo)/2;
    if(lo==hi) return false;
    if(arr[mid] == k) return true;
    if(arr[mid] < k) return help(arr, k, mid+1, hi);
    else return help(arr, k, lo, mid);
}
```

Best case: 9 “ish” steps = $O(1)$
Worst case: $T(n) = 10$ “ish” + $T(n/2)$ where n is hi-lo
 - $O(\log n)$ where n is array.length
 - Solve recurrence equation to know that…

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
    return help(arr, k, 0, arr.length);
}

boolean help(int[] arr, int k, int lo, int hi) {
    int mid = (hi+lo)/2;
    if(lo==hi) return false;
    if(arr[mid] == k) return true;
    if(arr[mid] < k) return help(arr, k, mid+1, hi);
    else return help(arr, k, lo, mid);
}
```
Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?
 - \(T(n) = 10 + T(n/2) \quad T(1) = 15 \)

2. “Expand” the original relation to find an equivalent general expression *in terms of the number of expansions*.

3. Find a closed-form expression by setting the *number of expansions* to a value which reduces the problem to a base case.
Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?
 - \(T(n) = 10 + T(n/2) \quad T(1) = 15 \)

2. “Expand” the original relation to find an equivalent general expression in terms of the number of expansions.
 - \(T(n) = 10 + 10 + T(n/4) \)
 = \(10 + 10 + 10 + T(n/8) \)
 = \(... \)
 = \(10k + T(n/(2^k)) \) (where \(k \) is the number of expansions)

3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case
 - \(n/(2^k) = 1 \) means \(n = 2^k \) means \(k = \log_2 n \)
 - So \(T(n) = 10 \log_2 n + 15 \) (get to base case and do it)
 - So \(T(n) \) is \(\mathcal{O}(\log n) \)
Ignoring constant factors

- So binary search is $O(\log n)$ and linear is $O(n)$
 - But which will actually be faster?
 - Depending on constant factors and size of n, in a particular situation, linear search could be faster….

- Could depend on constant factors
 - How many assignments, additions, etc. for each n
 - And could depend on size of n

- But there exists some n_0 such that for all $n > n_0$ binary search wins

- Let’s play with a couple plots to get some intuition…
Example

- Let’s try to “help” linear search
 - Run it on a computer 100x as fast (say 2010 model vs. 1990)
 - Use a new compiler/language that is 3x as fast
 - Be a clever programmer to eliminate half the work
 - So doing each iteration is 600x as fast as in binary search
- Note: 600x still helpful for problems without logarithmic algorithms!
Another example: sum array

Two “obviously” linear algorithms: \(T(n) = O(1) + T(n-1) \)

Iterative:

```
int sum(int[] arr){
    int ans = 0;
    for(int i=0; i<arr.length; ++i)
        ans += arr[i];
    return ans;
}
```

Recursive:

```
int sum(int[] arr){
    return help(arr,0);
}
int help(int[] arr,int i) {
    if(i==arr.length)
        return 0;
    return arr[i] + help(arr,i+1);
}
```

Recursive:

- Recurrence is \(c + c + \ldots + c \) for \(n \) times
What about a **binary** version of sum?

```java
int sum(int[] arr) {
    return help(arr,0,arr.length);
}
int help(int[] arr, int lo, int hi) {
    if(lo==hi) return 0;
    if(lo==hi-1) return arr[lo];
    int mid = (hi+lo)/2;
    return help(arr,lo,mid) + help(arr,mid,hi);
}
```

Recurrence is $T(n) = O(1) + 2T(n/2)$
- $1 + 2 + 4 + 8 + \ldots$ for $\log n$ times
- $2^{(\log n)} - 1$ which is proportional to n (by definition of logarithm)

Easier explanation: it adds each number once while doing little else

“Obvious”: You can’t do better than $O(n)$ – have to read whole array
Parallelism teaser

• But suppose we could do two recursive calls at the same time
 – Like having a friend do half the work for you!

```java
int sum(int[] arr) {
    return help(arr, 0, arr.length);
}

int help(int[] arr, int lo, int hi) {
    if (lo == hi) return 0;
    if (lo == hi - 1) return arr[lo];
    int mid = (hi + lo) / 2;
    return help(arr, lo, mid) + help(arr, mid, hi);
}
```

• If you have as many “friends of friends” as needed, the recurrence is now
 \[T(n) = O(1) + \frac{1}{2} T(n/2) \]
 – \(O(\log n) \) : same recurrence as for `find`
Really common recurrences

Should know how to solve recurrences but also recognize some really common ones:

\[
T(n) = O(1) + T(n-1) \quad \text{linear}
\]
\[
T(n) = O(1) + 2T(n/2) \quad \text{linear}
\]
\[
T(n) = O(1) + T(n/2) \quad \text{logarithmic}
\]
\[
T(n) = O(1) + 2T(n-1) \quad \text{exponential}
\]
\[
T(n) = O(n) + T(n-1) \quad \text{quadratic}
\]
\[
T(n) = O(n) + T(n/2) \quad \text{linear}
\]
\[
T(n) = O(n) + 2T(n/2) \quad O(n \log n)
\]

Note big-Oh can also use more than one variable

- Example: can sum all elements of an \(n\)-by-\(m\) matrix in \(O(nm)\)