CSE332: Data AbstractionsFinal Review

Nicholas Shahan Winter 2015

Final Logistics

- Final on Wednesday, March 18th
 - Time: 12:30-2:20pm in Kane 220
 - No notes or no books
 - Info on website under "Final Exam"

Topics (short list)

- Sorting
- Graphs
- Parallelization
- Concurrency
- Amortized Analysis
- P, NP, NP-completeness
- Material in Midterm
 (fair game but not the focus)

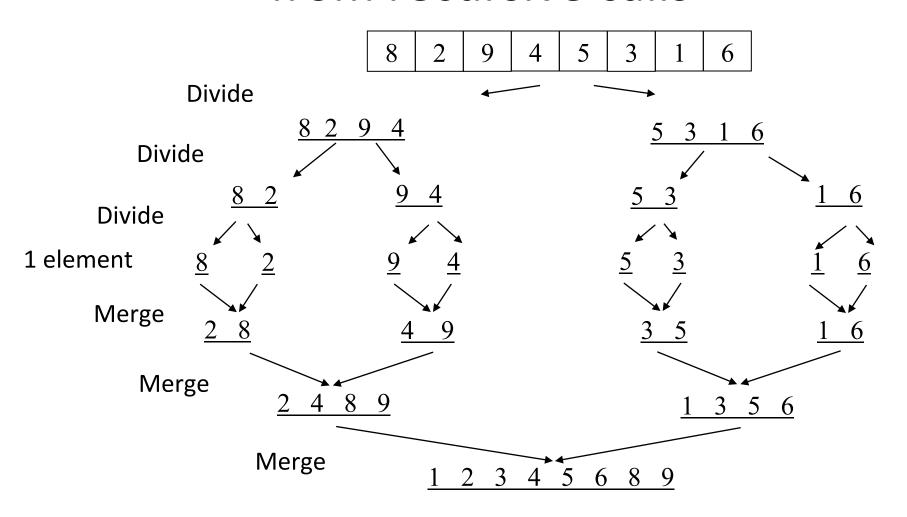
Preparing for the Exam

- Written Homework a good indication of what could be on exam
- Check out previous quarters' exams
 - 332 exams
 - 326 exams differ quite a bit
 - Final info site has links
- Make sure you:
 - Understand the key concepts
 - Can perform the key algorithms

Sorting Topics

- Know
 - Insertion & Selection sorts O(n²)
 - Heap Sort O(n log n)
 - Merge Sort O(n log n)
 - Quick Sort O(n log n) on average
 - Bucket Sort & Radix Sort
- Know run-times
- Know how to carry out the sort
- Lower Bound for Comparison Sort
 - Cannot do better than O(n log n)
 - Won't be ask to give full proof
 - But may be asked to use similar techniques
 - Be familiar with the ideas

Mergesort example: Merge as we return from recursive calls



We need another array in which to do each merging step. Merge results into there, then copy back to original array.

Graph Topics

- Graph Basics
 - Definition, weights, directedness, degree
 - Paths, cycles
 - Connectedness (directed vs undirected)
 - 'Tree' in a graph sense
 - DAGs
- Graph Representations
 - Adjacency List
 - Adjacency Matrix
 - What each is, how to use it
- Graph Traversals
 - Breadth-First
 - Depth-First
 - What data structures are associated with each?

Graph Topics

- Topological Sort
- Dijkstra's Algorithm
 - Doesn't play nice with negative weights
- Minimum Spanning Trees
 - Prim's Algorithm
 - Kruskal's Algorithm
- Know algorithms
- Know run-times

Dijkstra's Algorithm Overview

Given a weighted graph and a vertex in the graph (call it A), find the shortest path from A to each other vertex

- Cost of path defined as sum of weights of edges
- Negative edges not allowed
- The algorithm:
 - Create a table like this:
 - Init A's cost to 0, others infinity (or just '??')

vertex	known?	cost	path
Α		0	
В		??	
С		??	
D		??	

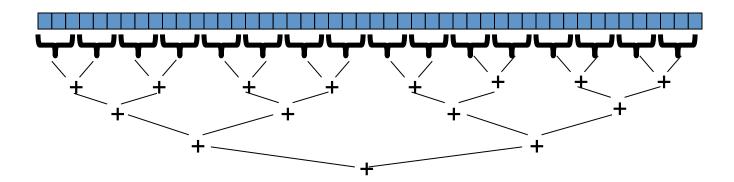
- While there are unknown vertices:
 - Select unknown vertex w/ lowest cost (A initially)
 - Mark it as known
 - Update cost and path to all unknown vertices adjacent to that vertex

Parallelism

- Fork-join parallelism
 - Know the concept; diff. from making lots of threads
 - Be able to write pseudo-code
 - Reduce: parallel sum, multiply, min, find, etc.
 - Map: bit vector, string length, etc.
- Work & span definitions
- Speed-up & parallelism definitions
- Justification for run-time, given tree
- Justification for 'halving' each step
- Amdahl's Law
- Parallel Prefix
 - Technique
 - Span
 - Uses: Parallel prefix sum, filter, etc.
- Parallel Sorting

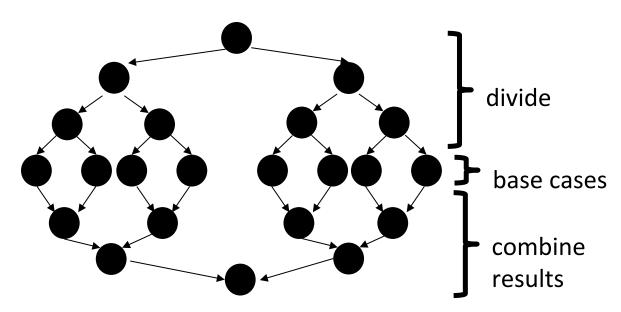
Parallelism Overview

- We say it takes time T_P to complete a task with P processors
- Adding together an array of n elements would take
 O(n) time, when done sequentially (that is, P=1)
 - Called the work; T₁
- If we have 'enough' processors, we can do it much faster; O(logn) time
 - Called the span; T_{∞}



Considering Parallel Run-time

Our **fork** and **join** frequently look like this:



- Each node takes O(1) time
 - Even the base cases, as they are at the cut-off
- Sequentially, we can do this in O(n) time; O(1) for each node, ~3n nodes, if there were no cut-off (linear # on base case row, halved each row up/down)
- Carrying this out in (perfect) parallel will take the time of the longest branch; ~2logn,
 if we halve each time

Some Parallelism Definitions

- Speed-up on P processors: T₁ / T_P
- We often assume perfect linear speed-up
 - That is, $T_1 / T_P = P$; w/ 2x processors, it's twice as fast
 - 'Perfect linear speed-up 'usually our goal; hard to get in practice
- **Parallelism** is the maximum possible speed-up: T_1 / T_{∞}
 - At some point, adding processors won't help
 - What that point is depends on the span

The ForkJoin Framework Expected Performance

If you write your program well, you can get the following expected performance:

$$T_{P} \leq (T_{1}/P) + O(T_{\infty})$$

- $-T_1/P$ for the overall work split between P processors
 - P=4? Each processor takes 1/4 of the total work
- O(T_∞) for merging results
 - Even if P=∞, then we still need to do O(T_∞) to merge results
- What does it mean??
- We can get decent benefit for adding more processors;
 effectively linear speed-up at first (expected)
- With a large # of processors, we're still bounded by T_{∞} ; that term becomes dominant

Amdahl's Law

Let the work (time to run on 1 processor) be 1 unit time

Let **S** be the portion of the execution that **cannot** be parallelized

Then:
$$T_1 = S + (1-S) = 1$$

Then:
$$T_P = S + (1-S)/P$$

Amdahl's Law: The overall *speedup* with **P** processors is:

$$T_1/T_P = 1/(S + (1-S)/P)$$

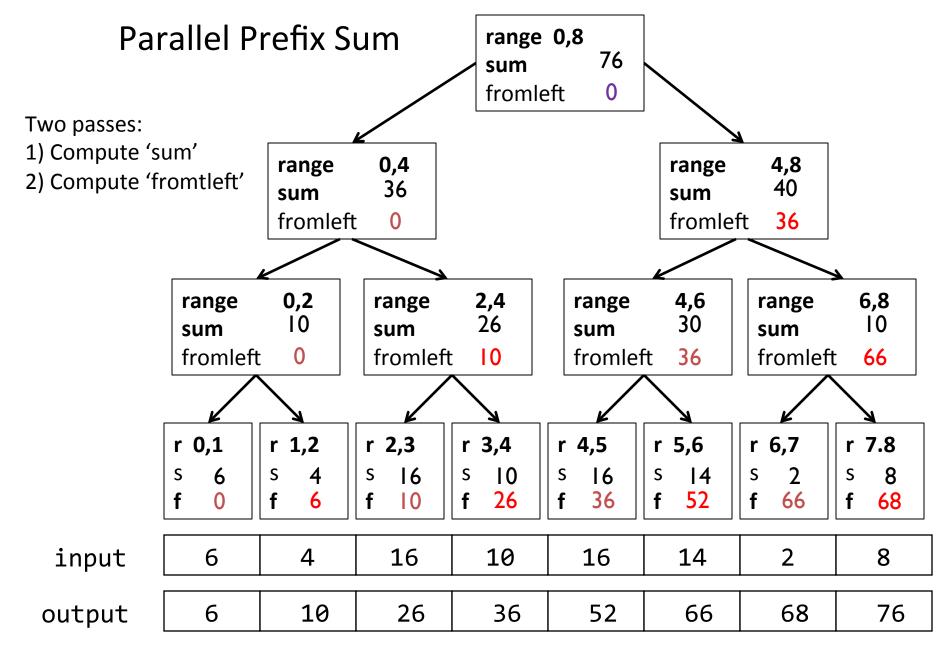
And the *parallelism* (infinite processors) is:

$$T_1/T_\infty = 1/S$$

Parallel Prefix Sum

- Given an array of numbers, compute an array of their running sums in O(logn) span
- Requires 2 passes (each a parallel traversal)
 - First is to gather information
 - Second figures out output

input	6	4	16	10	16	14	2	8
output	6	10	26	36	52	66	68	76



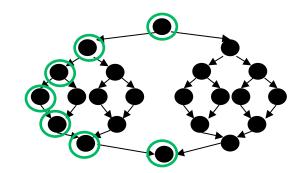
Parallel Quicksort

2 optimizations:

- Do the two recursive calls in parallel
 - Now recurrence takes the form:

$$O(n) + 1T(n/2)$$

So $O(n)$ span



- 2. Parallelize the partitioning step
 - Partitioning normally O(n) time
 - Recall that we can use Parallel Prefix Sum to 'filter' with O(logn) span
 - Partitioning can be done with 2 filters, so O(logn) span for each partitioning step

These two parallel optimizations bring parallel quicksort to a span of $O(\log^2 n)$

Concurrency

- Race conditions
- Data races
- Synchronizing your code
 - Locks, Reentrant locks
 - Java's 'synchronize' statement
 - Readers/writer locks
 - Deadlock
 - Issues of critical section size
 - Issues of lock scheme granularity coarse vs fine
- Knowledge of bad interleavings
- Be able to write pseudo-code for Java threads and, locks

Race Conditions

A race condition occurs when the computation result depends on scheduling (how threads are interleaved)

- If T1 and T2 happened to get scheduled in a certain way, things go wrong
- We, as programmers, cannot control scheduling of threads; result is that we need to write programs that work independent of scheduling

Race conditions are bugs that exist only due to concurrency

No interleaved scheduling with 1 thread

Typically, problem is that some *intermediate state* can be seen by another thread; screws up other thread

 Consider a 'partial' insert in a linked list; say, a new node has been added to the end, but 'back' and 'count' haven't been updated

Data Races

- A *data race* is a specific type of *race condition* that can happen in 2 ways:
 - Two different threads can *potentially* write a variable at the same time
 - One thread can *potentially* write a variable while another reads the variable
 - Simultaneous reads are fine; not a data race, and nothing bad would happen
 - 'Potentially' is important; we say the code itself has a data race – it is independent of an actual execution
- Data races are bad, but we can still have a race condition, and bad behavior, when no data races are present

Readers/writer locks

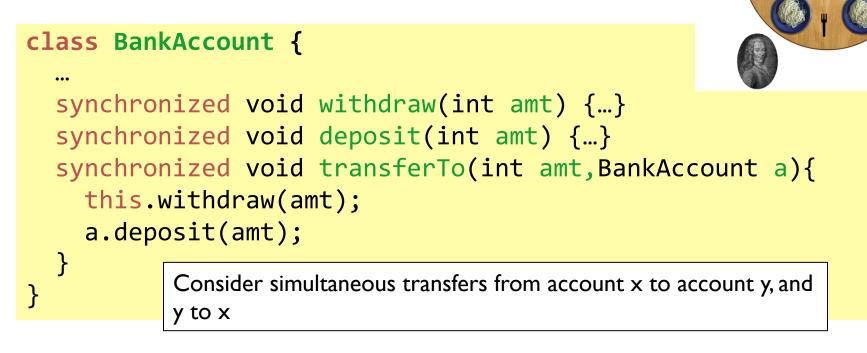
A new synchronization ADT: The **readers/writer lock**

- Idea: Allow any number of readers OR one writer
- This allows more concurrent access (multiple readers)
- A lock's states fall into three categories:
 - "not held"
 - "held for writing" by one thread
 - "held for reading" by one or more threads
- new: make a new lock, initially "not held"
- acquire write: block if currently "held for reading" or "held for writing", else make "held for writing"
- release write: make "not held"
- acquire read: block if currently "held for writing", else make/ keep "held for reading" and increment readers count
- release_read: decrement readers count, if 0, make "not held"

0 ≤ writers ≤ 1 &&
0 ≤ readers &&
writers*readers==0

Deadlock

- As illustrated by the 'The Dining Philosophers' problem
- A deadlock occurs when there are threads T1
 - Each is waiting for a lock held by the next
 - Tn is waiting for a resource held by T1
- In other words, there is a cycle of waiting



Amortized Analysis

- To have an Amortized Bound of O(f(n)):
 - There does not exist a series of M operations with run-time worse than O(M*f(n))
- Amortized vs average case
- To prove: prove that no series of operations can do worse than O(M*f(n))
- To disprove: find a series of operations that's worse

P, NP, NP Completeness

- P: set of all problems that can be solved in polynomial time
 - sorting, shortest path, Euler circuit, etc.
- NP: set of all problems for which a given candidate solution can be tested in polynomial time
 - Hamiltonian Circuit, Vertex Cover, etc.

P=NP???

- Currently no proof.
- It is generally believed that P≠NP
- Prove it for fame, fortune and a Turing Award!

NP-Complete

- Set of problems in NP that (we are pretty sure) cannot be solved in polynomial time.
- These are thought of as the hardest problems in the class NP.
- Interesting fact: If any one NP-Complete problem could be solved in polynomial time, then all NP-Complete problems could be solved in polynomial time.
- Even more: If any NP-Complete problem is in P, then all of NP is in P

Is my problem in P or NP?

- Reduce a known NP-Complete problem into your problem
- (not the other way around) via a transformation
 - The transformation must take polynomial time
- Now you can say your problem is at least as hard as a known NP-Complete problem

Working with NP Problems

Approximation Algorithm

 Can we get an efficient algorithm that guarantees something close to optimal? (e.g. Answer is guaranteed to be within 1.5x of Optimal, but solved in polynomial time).

Restrictions

Many hard problems are easy for restricted inputs (e.g. graph is always a tree, degree of vertices is always 3 or less).

Heuristics

 Can we get something that seems to work well (good approximation/fast enough) most of the time? (e.g. In practice, n is small-ish)