CSE332: Data Abstractions
Final Review

+S Nicholas Shahan w
Winter 2015

Adapted from slides by Hye In Kim

Final Logistics

* Final on Wednesday, March 18t
— Time: 12:30-2:20pm in Kane 220

* No notes or no books

— Info on website under “Final Exam”

Topics (short list)
Sorting

Graphs

Parallelization
Concurrency

Amortized Analysis

P, NP, NP-completeness

Material in Midterm
(fair game but not the focus)

Preparing for the Exam

 Written Homework a good indication of what
could be on exam
* Check out previous quarters’ exams
— 332 exams
— 326 exams differ quite a bit
— Final info site has links

* Make sure you:
— Understand the key concepts
— Can perform the key algorithms

Sorting Topics

Know

— Insertion & Selection sorts - O(n?)
— Heap Sort - O(n log n)

— Merge Sort - O(n log n)

— Quick Sort - O(n log n) on average
— Bucket Sort & Radix Sort

Know run-times
Know how to carry out the sort

Lower Bound for Comparison Sort

— Cannot do better than O(n log n)

— Won’t be ask to give full proof

— But may be asked to use similar techniques
— Be familiar with the ideas

Mergesort example: Merge as we return
from recursive calls

812191453 |1]6

Divide «— B
82 9 4 531 6
Divide \ / .,

Divid 8 2 9 4 5 3 1 6

ivide N\ /\ N PN

1 element 8 2 4 5 3 1 6

\/ \/ o W

Merge 5 g 35 16

2 4 89 1 3 56
Merge \\\\\\\\\\\\\\\“"*”/////’/’/’///

1 2345 6389

We need another array in which to do each merging step.
Merge results into there, then copy back to original array.

Graph Topics

 Graph Basics
— Definition, weights, directedness, degree
— Paths, cycles
— Connectedness (directed vs undirected)
— ‘Tree’ in a graph sense
— DAGs

 Graph Representations
— Adjacency List
— Adjacency Matrix
— What each is, how to use it
* Graph Traversals
— Breadth-First
— Depth-First
— What data structures are associated with each?

Graph Topics

Topological Sort

Dijkstra’s Algorithm

— Doesn’t play nice with negative weights
Minimum Spanning Trees

— Prim’s Algorithm

— Kruskal’s Algorithm

Know algorithms

Know run-times

Dijkstra’s Algorithm Overview

Given a weighted graph and a vertex in the graph (call it A), find
the shortest path from A to each other vertex

e Cost of path defined as sum of weights of edges
 Negative edges not allowed

vertex | known? cost path
. A 0
 The algorithm: 3 p
* Create a table like this: —
A’ C ?7?
e |nit A’s cost to O, others S —
infinity (or just “??’) —

* While there are unknown vertices:

» Select unknown vertex w/ lowest cost (A initially)
 Mark it as known

* Update cost and path to all unknown vertices adjacent
to that vertex

Parallelism

Fork-join parallelism
— Know the concept; diff. from making lots of threads
— Be able to write pseudo-code
— Reduce: parallel sum, multiply, min, find, etc.
— Map: bit vector, string length, etc.
Work & span definitions
Speed-up & parallelism definitions
Justification for run-time, given tree
Justification for ‘halving’ each step
Amdahl’s Law

Parallel Prefix

— Technique

— Span

— Uses: Parallel prefix sum, filter, etc.
Parallel Sorting

Parallelism Overview

* We say it takes time T, to complete a task with P
processors

 Adding together an array of n elements would take
O(n) time, when done sequentially (that is, P=1)
— Called the work; T,

* |f we have ‘enough’ processors, we can do it much
faster; O(logn) time
— Called the span; T,

Considering Parallel Run-time

Our fork and join frequently look like this:

O\ divide
} base cases
combine
\‘ results

e Each node takes O(1) time
* Even the base cases, as they are at the cut-off
» Sequentially, we can do this in O(n) time; O(1) for each node, ~3n nodes, if there were
no cut-off (linear # on base case row, halved each row up/down)
* Carrying this out in (perfect) parallel will take the time of the longest branch; ~2logn,

if we halve each time

Some Parallelism Definitions

* Speed-up on P processors: T, / T,

 We often assume perfect linear speed-up
— Thatis, T, / T, = P; w/ 2x processors, it’s twice as fast

— ‘Perfect linear speed-up "usually our goal; hard to get in
practice

* Parallelism is the maximum possible
speed-up: T,/ T,
— At some point, adding processors won’t help
— What that point is depends on the span

The Forkloin Framework Expected

Performance
If you write your program well, you can get the
following expected performance:
T, < (T,/P)+0O(T,)
— T,/P for the overall work split between P processors
e P=4? Each processor takes 1/4 of the total work
— O(T.) for merging results
* Even if P=oo, then we still need to do O(T) to merge results
* What does it mean??

— We can get decent benefit for adding more processors;
effectively linear speed-up at first (expected)

— With a large # of processors, we’re still bounded by T _;
that term becomes dominant

Amdahl’s Law

Let the work (time to run on 1 processor) be 1 unit time

Let S be the portion of the execution that cannot be
parallelized

Then: T,=S+(1-5)=1

Then: T,=S+(1-S)/P

Amdahl’s Law: The overall speedup with P processors is:
T,/T, =1/(S+(1-S)/P)

And the parallelism (infinite processors) is:
T,/T,=1/S

Parallel Prefix Sum

e Given an array of numbers, compute an
array of their running sums in O(logn) span

* Requires 2 passes (each a parallel traversal)
— First is to gather information

— Second figures out output

input 6 4 16 10 16 14 2

output 6 10 26 36 52 66 68

76

Two passes:

1) Compute ‘sum’

2) Compute ‘fromtleft’

input

Parallel Prefix Sum range 0,8
sum 76
/ fromleft 0 \
range 04 range 4,8
sum 36 sum 40
fromleft O fromleft 36
range 0,2 range 2,4 range 4,6 range 6,8
sum 10 sum 26 sum 30 sum 10
fromleft O fromleft 10 fromleft 36 fromleft 66
ro1l r 1,2 r 2,3 r 3,4 r 4,5 r 5,6 r 6,7 r 7.8
S 6 S 4 S 16 S 10 S 16 S 14 ||s 2 s 8
f O f 6 f 10 f 26 f 36 ||[f 52 f 66 f 68
6 4 16 10 16 14 2 8
6 10 26 36 52 66 68 76

output

Parallel Quicksort

2 optimizations:
1. Do the two recursive calls in parallel
* Now recurrence takes the form:
O(n) + 1T(n/2)
So O(n) span

2. Parallelize the partitioning step
 Partitioning normally O(n) time
 Recall that we can use Parallel Prefix Sum to ‘filter’ with O(logn)
span
 Partitioning can be done with 2 filters, so O(logn) span for each
partitioning step
These two parallel optimizations bring parallel quicksort to a span of

O(log?n)

Concurrency

Race conditions
Data races

Synchronizing your code

— Locks, Reentrant locks

— Java’s ‘synchronize’ statement

— Readers/writer locks

— Deadlock

— Issues of critical section size

— Issues of lock scheme granularity — coarse vs fine

Knowledge of bad interleavings

Be able to write pseudo-code for Java threads and,
locks

Race Conditions

A race condition occurs when the computation result
depends on scheduling (how threads are interleaved)

e |fT1and T2 happened to get scheduled in a certain way,
things go wrong

* We, as programmers, cannot control scheduling of threads;
result is that we need to write programs that work
independent of scheduling

Race conditions are bugs that exist only due to concurrency
* Nointerleaved scheduling with 1 thread

Typically, problem is that some intermediate state can be
seen by another thread; screws up other thread

 Consider a ‘partial’ insert in a linked list; say, a new node has
been added to the end, but ‘back’ and ‘count’ haven’t been

updated

Data Races

 Adata race is a specific type of race condition
that can happen in 2 ways:

— Two different threads can potentially write a
variable at the same time

— One thread can potentially write a variable while
another reads the variable

— Simultaneous reads are fine; not a data race, and
nothing bad would happen

— ‘Potentially’ is important; we say the code itself has
a data race — it is independent of an actual
execution

 Data races are bad, but we can still have a race
condition, and bad behavior, when no data
races are present

Readers/writer locks

O <writers <1 &&
0 < readers &&
writers*readers==

A new synchronization ADT: The readers/writer lock

* |dea: Allow any number of readers OR one writer

* This allows more concurrent access (multiple readers

* Alock’s states fall into three categories:
— “not held”
— “held for writing” by one thread
— “held for reading” by one or more threads

* new: make a new lock, initially “not held”

* acquire write: blockif currently “held for reading” or “held
for writing”, else make “held for writing”

* release write: make “not held”

* acquire read: blockif currently “held for writing”, else make/
keep “held for reading” and increment readers count

* release read: decrementreaders count, if 0, make “not held”

Deadlock

* Asillustrated by the “The Dining Philosophers’ problem

e A deadlock occurs when there are threads T1
— Each is waiting for a lock held by the next
— Tnis waiting for a resource held by T1

* In other words, there is a cycle of waiting

class BankAccount {

synchronized void withdraw(int amt) {..}
synchronized void deposit(int amt) {..}
synchronized void transferTo(int amt,BankAccount a){
this.withdraw(amt);
a.deposit(amt);

¥

} Consider simultaneous transfers from account x to account y, and
y to X

23

Amortized Analysis

To have an Amortized Bound of O(f(n)):

— There does not exist a series of M operations with
run-time worse than O(M*f(n))

Amortized vs average case

To prove: prove that no series of operations
can do worse than O(M*f(n))

To disprove: find a series of operations that’s
worse

P, NP, NP Completeness

e P:set of all problems that can be solved in
polynomial time
— sorting, shortest path, Euler circuit, etc.

* NP: set of all problems for which a given
candidate solution can be tested in
polynomial time
— Hamiltonian Circuit, Vertex Cover, etc.

P=NP ???

* Currently no proof.
* [tis generally believed that P=NP
* Prove it for fame, fortune and a Turing Award!

NP-Complete

Set of problems in NP that (we are pretty sure)
cannot be solved in polynomial time.

These are thought of as the hardest problems in
the class NP.

Interesting fact: If any one NP-Complete problem
could be solved in polynomial time, then all NP-
Complete problems could be solved in
polynomial time.

Even more: If any NP-Complete problem is in P,
then allof NP isin P

Is my problem in P or NP?

* Reduce a known NP-Complete problem into
your problem

* (not the other way around) via a
transformation

— The transformation must take polynomial time

* Now you can say your problem is at least as
hard as a known NP-Complete problem

Working with NP Problems

* Approximation Algorithm

— Can we get an efficient algorithm that guarantees
something close to optimal? (e.g. Answer is guaranteed to
be within 1.5x of Optimal, but solved in polynomial time).

 Restrictions

— Many hard problems are easy for restricted inputs (e.g.
graph is always a tree, degree of vertices is always 3 or
less).

e Heuristics

— Can we get something that seems to work well (good
approximation/fast enough) most of the time? (e.g. In
practice, n is small-ish)

