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Announcements

• HW3 part 3 due Thursday night

• Final exam topics posted online

– also sample final

– covers everything except NP-completeness

– closed book, notes

– 4:30 or 6:30 on Monday (attend either one)
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A Hidden Tree

Start

End
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Spanning Tree in a Graph

Spanning tree

- Connects all the vertices

- No cycles
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Undirected Graph

• G = (V,E)

– V is a set of vertices (or nodes)

– E is a set of unordered pairs of vertices

1
2

3

4

5
6

7

V = {1,2,3,4,5,6,7}

E = {(1,2),(1,6),(1,5),(2,7),(2,3),

(3,4),(4,7),(4,5),(5,6)}

2 and 3 are adjacent

2 is incident to edge (2,3)
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Spanning Tree Problem

• Input: An undirected graph G = (V,E). G is 
connected.

• Output: T ⊂⊂⊂⊂ E such that

– (V,T) is a connected graph

– (V,T) has no cycles
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Spanning Tree Algorithm

ST(Vertex i) {

mark i;

for each j adjacent to i  {

if (j is unmarked) {

Add (i,j) to T;

ST(j);

}

}

}

Main( ) {

T = empty set;

ST(1);

}



Finding a reliable routing subnetwork:

• edge cost  =  probability that it won’t fail

• Find the spanning tree that is least likely to fail
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Best Spanning Tree
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Example of a Spanning Tree
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Probability of success = .85 x .95 x .89 x .95 x 1.0 x .84

=  .5735
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Minimum Spanning Trees
Given an undirected graph G=(V,E), find 

a graph G’=(V, E’) such that:

– E’ is a subset of E

– |E’| = |V| - 1

– G’ is connected

– is minimal

Applications: wiring a house, power 
grids, Internet connections
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Minimum Spanning Tree 

Problem
• Input: Undirected Graph G = (V,E) and  

C(e) is the cost of edge e.

• Output: A spanning tree T with minimum 
total cost.  That is: T that minimizes

∑
∈

=

Te

eCTC )()(



12

Kruskal’s MST Algorithm

Idea: Grow a forest out of edges that do not create a 

cycle.  Pick an edge with the smallest weight.

G=(V,E)

v
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Kruskal’s Algorithm for MST

An edge-based greedy algorithm

Builds MST by greedily adding edges

1. Initialize with

• empty MST

• all vertices marked unconnected

• all edges unmarked

2. While there are still unmarked edges
a. Pick the lowest cost edge (u,v) and mark it

b. If u and v are not already connected, add (u,v) to the MST 
and mark u and v as connected to each other

Sound familiar? 
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Example of Kruskal 1
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Example of Kruskal 2
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Example of Kruskal 2
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Example of Kruskal 3
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Example of Kruskal 4
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Example of Kruskal 5
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Example of Kruskal 6
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Example of Kruskal 7
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Example of Kruskal 7
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Example of Kruskal 8,9
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Data Structures for Kruskal

• Sorted edge list

• Disjoint Union / Find
– Union(a,b) - merge the disjoint sets named by a and b

– Find(a) returns the name of the set containing a
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Example of DU/F 1
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Example of DU/F 2
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Kruskal’s Algorithm with DU / F

Sort the edges by increasing cost;

Initialize A to be empty;

for each edge (i,j) chosen in increasing order do

u := Find(i);

v := Find(j);

if not(u = v) then 

add (i,j) to A;

Union(u,v);

This algorithm will work, but it goes through all the edges.  

Is this always necessary?
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Kruskal code
void Graph::kruskal(){

int edgesAccepted = 0;

DisjSet s(NUM_VERTICES);

while (edgesAccepted < NUM_VERTICES – 1){

e = smallest weight edge not deleted yet;

// edge e = (u, v)

uset = s.find(u);

vset = s.find(v);

if (uset != vset){

edgesAccepted++;

s.unionSets(uset, vset);

}

}

}

2|E| finds

|V| unions

|E| heap ops

Total Cost:

|V| ops to init. sets
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Kruskal’s Algorithm: Correctness

It clearly generates a spanning tree. Call it TK.

Suppose TK is not minimum:

Pick another spanning tree Tmin with lower cost than TK

Pick the smallest edge e1=(u,v) in TK that is not in Tmin

Tmin already has a path p in Tmin from u to v
⇒ Adding e1 to Tmin will create a cycle in Tmin

Pick an edge e2 in p that Kruskal’s algorithm considered 
after adding e1 (must exist: u and v unconnected when e1 

considered)
⇒ cost(e2) ≥ cost(e1)
⇒ can replace e2 with e1 in Tmin without increasing cost!

Keep doing this until Tmin is identical to TK

⇒ TK must also be minimal – contradiction!




