CSE 332: Spanning Trees

Richard Anderson, Steve Seitz Winter 2014

Announcements

- HW3 part 3 due Thursday night
- Final exam topics posted online
- also sample final
- covers everything except NP-completeness
- closed book, notes
-4:30 or 6:30 on Monday (attend either one)

A Hidden Tree

Start

End

Spanning Tree in a Graph

Spanning tree

- Connects all the vertices
- No cycles

Undirected Graph

- $G=(V, E)$
-V is a set of vertices (or nodes)
$-E$ is a set of unordered pairs of vertices

$$
\begin{aligned}
V= & \{1,2,3,4,5,6,7\} \\
E= & \{(1,2),(1,6),(1,5),(2,7),(2,3), \\
& (3,4),(4,7),(4,5),(5,6)\}
\end{aligned}
$$

2 and 3 are adjacent
2 is incident to edge $(2,3)$

Spanning Tree Problem

- Input: An undirected graph $G=(V, E) . G$ is connected.
- Output: $T \subset E$ such that
$-(\mathrm{V}, \mathrm{T})$ is a connected graph
- (V, T) has no cycles

Spanning Tree Algorithm

Best Spanning Tree

Finding a reliable routing subnetwork:

- edge cost = probability that it won't fail
- Find the spanning tree that is least likely to fail

Example of a Spanning Tree

Probability of success $=.85 \times .95 \times .89 \times .95 \times 1.0 \times .84$ $=.5735$

Minimum Spanning Trees

Given an undirected graph $G=(\mathrm{V}, \mathrm{E})$, find a graph $\mathrm{G}^{\prime}=\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$ such that:
$-E^{\prime}$ is a subset of E
$-\left|\mathrm{E}^{\prime}\right|=|\mathrm{V}|-1$
$-G^{\prime}$ is connected

G^{\prime} is a minimum spanning tree.

$-\sum_{(u, v) \in E^{\prime}} \mathrm{c}_{u v}$ is minimal
Applications: wiring a house, power grids, Internet connections

Minimum Spanning Tree Problem

- Input: Undirected Graph $G=(\mathrm{V}, \mathrm{E})$ and $\mathrm{C}(\mathrm{e})$ is the cost of edge e .
- Output: A spanning tree T with minimum total cost. That is: T that minimizes

$$
C(T)=\sum_{e \in T} C(e)
$$

Kruskal's MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.
$\mathrm{G}=(\mathrm{V}, \mathrm{E})$

Kruskal's Algorithm for MST

An edge-based greedy algorithm
Builds MST by greedily adding edges

1. Initialize with

- empty MST
- all vertices marked unconnected
- all edges unmarked

2. While there are still unmarked edges
a. Pick the lowest cost edge (u, v) and mark it
b. If u and v are not already connected, add (u, v) to the MST and mark u and v as connected to each other

Sound familiar?

Example of Kruskal 1

$$
\begin{array}{ccccccccc}
(7,4) & (2,1) & (7,5) & (5,6) & (5,4) & (1,6) & (2,7) & (2,3) & (3,4) \\
0 & 1 & 1 & 2 & 2 & 3 & 3 & 3 & 3
\end{array}
$$

Example of Kruskal 2

Example of Kruskal 2

$$
\begin{array}{ccccccccc}
(7,4) & (2,1) & (7,5) & (5,6) & (5,4) & (1,6) & (2,7) & (2,3) & (3,4) \\
0 & 1 & 1 & 2 & 2 & 3 & 3 & 3 & 3
\end{array}
$$

Example of Kruskal 3

$$
\begin{array}{ccccccc}
(7,4) & (2,1) & (7,5) & (5,6) & (5,4) & (1,6) & (2,7) \\
0 & 12,3) & (3,4) & (1,5) \\
2 & 2 & 3 & 3 & 3
\end{array}
$$

Example of Kruskal 4

$$
\begin{array}{ccccccc}
(7,4) & (2,1) & (7,5) & (5,6) & (5,4) & (1,6) & (2,7) \\
\text { a } & (2,3) & (3,4) & (1,5) \\
2 & 2 & 3 & 3 & 3 & 3 & 4
\end{array}
$$

Example of Kruskal 5

$$
\begin{array}{cccccccc}
(7,4) & (2,1) & (\lambda, 5) & (5,6) & (5,4) & (1,6) & (2,7) & (2,3) \\
0 & 1 & 1,4) & (1,5) \\
2 & 2 & 3 & 3 & 3 & 3 & 4
\end{array}
$$

Example of Kruskal 6

$$
\begin{array}{ccccccc}
(7,4) & (2,1) & (7,5) & (5,6) & (5,4) & (1,6) & (2,7) \\
0 & 1 & (2,3) & (3,4) & (1,5) \\
2 & 2 & 3 & 3 & 3 & 3 & 4
\end{array}
$$

Example of Kruskal 7

$$
\begin{array}{ccccccc}
(7,4) & (2,1) & (7,5) & (5,6) & (5,4) & (1,6) & (2,7) \\
0 & 1 & 12,3) & (3,4) & (1,5) \\
\hline
\end{array}
$$

Example of Kruskal 7

$$
\begin{array}{cccccccc}
(7,4) & (2,1) & (7,5) & (5,6) & (5,4) & (1,6) & (2,7) & (2,3) \\
0 & 1 & 1,4) & (1,5) \\
\hline
\end{array}
$$

Example of Kruskal 8,9

Data Structures for Kruskal

- Sorted edge list

$$
\begin{array}{ccccccc}
(7,4) & (2,1) & (7,5) & (5,6) & (5,4) & (1,6) & (2,7) \\
0 & 1 & (2,3) & (3,4) & (1,5) \\
\hline
\end{array}
$$

- Disjoint Union / Find
- Union (a, b) - merge the disjoint sets named by a and b
- Find(a) returns the name of the set containing a

Example of DU/F 1

Example of DU/F 2

Kruskal's Algorithm with DU / F

```
Sort the edges by increasing cost;
Initialize A to be empty;
for each edge (i,j) chosen in increasing order do
    u := Find(i);
    v := Find(j);
    if not(u=v) then
        add (i,j) to A;
        Union(u,v);
```

This algorithm will work, but it goes through all the edges.
Is this always necessary?

Kruskal code

```
void Graph::kruskal() {
    int edgesAccepted = 0;
|V| ops to init. sets
    DisjSet s(NUM_VERTICES);
                            |El heap ops
    while (edgesAccepted < NUM_VERTICES 1) {
        e = smallest weight edge not deleted yet; }|E||Og|E
        // edge e = (u, v)
        uset = s.find(u);
        vset = s.find(v);
        if (uset != vset){
            edgesAccepted++;
            s.unionSets(uset, vset);
        }
    }
                                    O(|U)
```

\}

Total Cost: $O\left(I E l \log |E|+\mid E^{|+|V|)}=O(E|\log | E)\right)$

Kruskal's Algorithm: Correctness

It clearly generates a spanning tree. Call it T_{K}.
Suppose T_{K} is not minimum:
Pick another spanning tree $T_{\text {min }}$ with lower cost than T_{K}
Pick the smallest edge $e_{1}=(u, v)$ in T_{k} that is not in $T_{\text {min }}$
$\mathrm{T}_{\text {min }}$ already has a path p in $\mathrm{T}_{\text {min }}$ from u to v
\Rightarrow Adding e_{1} to $\mathrm{T}_{\text {min }}$ will create a cycle in $\mathrm{T}_{\text {min }}$
Pick an edge e_{2} in p that Kruskal's algorithm considered after adding e_{1} (must exist: u and v unconnected when e_{1} considered)
$\Rightarrow \operatorname{cost}\left(e_{2}\right) \geq \operatorname{cost}\left(e_{1}\right)$
\Rightarrow can replace e_{2} with e_{1} in $T_{\text {min }}$ without increasing cost!
Keep doing this until $T_{\text {min }}$ is identical to T_{K}
$\Rightarrow \mathrm{T}_{\mathrm{K}}$ must also be minimal - contradiction!

