
CSE 332:

Spanning Trees

Richard Anderson, Steve Seitz

Winter 2014

Announcements

• HW3 part 3 due Thursday night

• Final exam topics posted online

– also sample final

– covers everything except NP-completeness

– closed book, notes

– 4:30 or 6:30 on Monday (attend either one)

2

3

A Hidden Tree

Start

End

4

Spanning Tree in a Graph

Spanning tree

- Connects all the vertices

- No cycles

5

Undirected Graph

• G = (V,E)

– V is a set of vertices (or nodes)

– E is a set of unordered pairs of vertices

1
2

3

4

5
6

7

V = {1,2,3,4,5,6,7}

E = {(1,2),(1,6),(1,5),(2,7),(2,3),

(3,4),(4,7),(4,5),(5,6)}

2 and 3 are adjacent

2 is incident to edge (2,3)

6

Spanning Tree Problem

• Input: An undirected graph G = (V,E). G is
connected.

• Output: T ⊂⊂⊂⊂ E such that

– (V,T) is a connected graph

– (V,T) has no cycles

7

Spanning Tree Algorithm

ST(Vertex i) {

mark i;

for each j adjacent to i {

if (j is unmarked) {

Add (i,j) to T;

ST(j);

}

}

}

Main() {

T = empty set;

ST(1);

}

Finding a reliable routing subnetwork:

• edge cost = probability that it won’t fail

• Find the spanning tree that is least likely to fail

8

Best Spanning Tree

.80 .75

.95

.50
.95 1.0

.85

.84

.80

.89

9

Example of a Spanning Tree

.80 .75

.95

.50
.95 1.0

.85

.84

.80

.89

Probability of success = .85 x .95 x .89 x .95 x 1.0 x .84

= .5735

10

Minimum Spanning Trees
Given an undirected graph G=(V,E), find

a graph G’=(V, E’) such that:

– E’ is a subset of E

– |E’| = |V| - 1

– G’ is connected

– is minimal

Applications: wiring a house, power
grids, Internet connections

∑
∈ '),(

c
Evu

uv

G’ is a minimum

spanning tree.

11

Minimum Spanning Tree

Problem
• Input: Undirected Graph G = (V,E) and

C(e) is the cost of edge e.

• Output: A spanning tree T with minimum
total cost. That is: T that minimizes

∑
∈

=

Te

eCTC)()(

12

Kruskal’s MST Algorithm

Idea: Grow a forest out of edges that do not create a

cycle. Pick an edge with the smallest weight.

G=(V,E)

v

13

Kruskal’s Algorithm for MST

An edge-based greedy algorithm

Builds MST by greedily adding edges

1. Initialize with

• empty MST

• all vertices marked unconnected

• all edges unmarked

2. While there are still unmarked edges
a. Pick the lowest cost edge (u,v) and mark it

b. If u and v are not already connected, add (u,v) to the MST
and mark u and v as connected to each other

Sound familiar?

14

Example of Kruskal 1

1

6

5

4

7

2

33

3
4

0

2 2

1

3

(7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5)

0 1 1 2 2 3 3 3 3 4

1
3

15

Example of Kruskal 2

1

6

5

4

7

2

33

3
4

0

2 2

1

3

1
3

(7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5)

0 1 1 2 2 3 3 3 3 4

16

Example of Kruskal 2

1

6

5

4

7

2

33

3
4

0

2 2

1

3

1
3

(7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5)

0 1 1 2 2 3 3 3 3 4

17

Example of Kruskal 3

1

6

5

4

7

2

33

3
4

0

2 2

1

3

1
3

(7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5)

0 1 1 2 2 3 3 3 3 4

18

Example of Kruskal 4

1

6

5

4

7

2

33

3
4

0

2 2

1

3

1
3

(7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5)

0 1 1 2 2 3 3 3 3 4

19

Example of Kruskal 5

1

6

5

4

7

2

33

3
4

0

2 2

1

3

1
3

(7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5)

0 1 1 2 2 3 3 3 3 4

20

Example of Kruskal 6

1

6

5

4

7

2

33

3
4

0

2 2

1

3

1
3

(7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5)

0 1 1 2 2 3 3 3 3 4

21

Example of Kruskal 7

1

6

5

4

7

2

33

3
4

0

2 2

1

3

1
3

(7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5)

0 1 1 2 2 3 3 3 3 4

22

Example of Kruskal 7

1

6

5

4

7

2

33

3
4

0

2 2

1

3

1
3

(7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5)

0 1 1 2 2 3 3 3 3 4

23

Example of Kruskal 8,9

1

6

5

4

7

2

33

3
4

0

2 2

1

3

1
3

(7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5)

0 1 1 2 2 3 3 3 3 4

24

Data Structures for Kruskal

• Sorted edge list

• Disjoint Union / Find
– Union(a,b) - merge the disjoint sets named by a and b

– Find(a) returns the name of the set containing a

(7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5)

0 1 1 2 2 3 3 3 3 4

25

Example of DU/F 1

1

6

5

4

7

2

33

3
4

0

2 2

1

3

1
3

7

2

3
Find(5) = 7

Find(4) = 7

(7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5)

0 1 1 2 2 3 3 3 3 4

26

Example of DU/F 2

1

6

5

4

7

2

33

3
4

0

2 2

1

3

1
3

7

2

3

Find(1) = 2

Find(6) = 7

(7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5)

0 1 1 2 2 3 3 3 3 4

27

Kruskal’s Algorithm with DU / F

Sort the edges by increasing cost;

Initialize A to be empty;

for each edge (i,j) chosen in increasing order do

u := Find(i);

v := Find(j);

if not(u = v) then

add (i,j) to A;

Union(u,v);

This algorithm will work, but it goes through all the edges.

Is this always necessary?

28

Kruskal code
void Graph::kruskal(){

int edgesAccepted = 0;

DisjSet s(NUM_VERTICES);

while (edgesAccepted < NUM_VERTICES – 1){

e = smallest weight edge not deleted yet;

// edge e = (u, v)

uset = s.find(u);

vset = s.find(v);

if (uset != vset){

edgesAccepted++;

s.unionSets(uset, vset);

}

}

}

2|E| finds

|V| unions

|E| heap ops

Total Cost:

|V| ops to init. sets

29

Kruskal’s Algorithm: Correctness

It clearly generates a spanning tree. Call it TK.

Suppose TK is not minimum:

Pick another spanning tree Tmin with lower cost than TK

Pick the smallest edge e1=(u,v) in TK that is not in Tmin

Tmin already has a path p in Tmin from u to v
⇒ Adding e1 to Tmin will create a cycle in Tmin

Pick an edge e2 in p that Kruskal’s algorithm considered
after adding e1 (must exist: u and v unconnected when e1

considered)
⇒ cost(e2) ≥ cost(e1)
⇒ can replace e2 with e1 in Tmin without increasing cost!

Keep doing this until Tmin is identical to TK

⇒ TK must also be minimal – contradiction!

